ACID BASE SHEET

STEP I-GET LABS
Blood Gas (Art or Venous), Lactate, Albumin, Acetone, Chemistry Panel

STEP II-LOOK AT PH
If > 7.45 then patient’s primary problem is **alkalosis**
If < 7.35 then patient’s primary problem is **acidosis**

STEP III-LOOK AT BLOOD GAS CO2
If > 45 then **respiratory acidosis**
If < 35 then **respiratory alkalosis**

STEP IV-CALCULATE THE STRONG ION DIFFERENCE (SID)

SID = Na - Cl

LOW SID IF <38
This is a metabolic acidosis (Low SID acidosis); causes include:
Fluid Administration: Any fluid that has an SID of < 24 can cause acidosis (i.e. NS, ½ NS, D5W) 2 liters of NS in < 24 hours is enough to cause acidosis.
Renal Tubular Acidosis: Calculate Urine Anion Gap (Urine Na + K - Cl); if negative, not an RTA, consider other causes
Type I-Urine pH > 5.55 (auto-immune, sicklers, cirrhosis, idiopathic)
Type II-Urine pH < 5.55 (think myeloma, Wilson’s, Vit D deficiency, heavy metals)
Type IV-Hyperkalemic, Urine pH < 5.55; (aldosterone deficiency, diabetes)
Diarrhea

HIGH SID IF >38
This is metabolic alkalosis (High SID alkalosis); causes include:
Nasogastric Suction, Diuretics, hyperaldosteronism, volume depletion

STEP V-LOOK AT THE LACTATE
If > 2 then the patient has hyperlactatemia
If > 4 and the patient has an infection, **start EGDT**
If patient not infected, consider any other shock state, seizures, dead gut, hepatic failure, malignancies or just from hyperlactetemic state such as exercise or the use of b-agonists, or
Toxicologic causes of elevated lactate include Cyanide, Carbon Monoxide, Metformin, Didanosine, Stavudine, Zidovudine, Linezolid, Strychnine, Emtriva, Rotenone (Fish Poison), NaAzide (Lab Workers), Apap (if Liver Fx), Phospline (rodenticide), NaMonofluoroacetate (Coyote Poison-Give Etoh as antidote), Inh (if patient seizes), Hemlock, Depakote, Hydrogen Sulfide, Nitroprusside (If cyanide toxic), Ricin & Castor Beans, Propofol, Linezolid, Sympathomimetics (Cocaine, Methamphetamine), Jequirity peas (Abrus precatorius), Prunus Amygdalus Plants as well as Crab Tree Apple Seeds & Cassava (yucca).

Most of the toxins under SIG acidoses will also cause elevated lactate.

Rare causes: pyroglutamic acidemia (from taking tylenol in combination with severe sepsis, renal fx, or hepatic fx); Shoshin beri beri (from severe thiamine deficiency).
STEP VI-Calculate the Strong Ion Gap (SIG)

\[\text{SIG} = (\text{Base Deficit}) + (\text{SID} - 38) + 2.5 (4.2 - \text{Albumin (g/dL)}) - \text{Lactate} \]

This can also be thought of as the corrected base deficit, or put a minus sign in front and it is the corrected base excess.

IF SIG \(\geq 2 \), THIS IS A SIG METABOLIC ACIDOSIS

- **Uremia, DKA, AKA**,
- **Tox-ASA, ethylene glycol, methanol, propylene glycol (ativan, valium, dilantin infusions), iron, INH, & paraldehyde.**
- **DLactic Acidosis**- from short gut/blind loop. Will not show on lactate assay

NEGATIVE SIG

- Hypercalcemia, Hypermagnesemia, Hyperkalemia, Immunoglobulins, Bromide, Nitrates, **Lithium Overdose**

STEP VII-THINK ABOUT COMPENSATIONS

If primary is respiratory and you feel it is chronic, you can calculate the expected metabolic compensation.

Expected \(\Delta \) BE (or expected decrease of SID) = 0.4 x (Chronic Change in CO2)

If the primary problem is metabolic acidosis

**Expected \(\downarrow \) CO2=Base Deficit

If the primary problem is metabolic alkalosis

**Expected \(\uparrow \) CO2=0.6 x Base Excess

Old school formula may be useful for figuring out to correct PaCO2 in a COPD Patient

0.08 decrease in pH = for every 10 mmHg increase in PaCO2 acutely

STEP VIII-OSMOLAR GAP

If elevated SIG without explanation, get osmolar gap

\[\text{Osm Gap} = \text{Measured Osmol} - (2 \times \text{Na} + \text{Gluc}/18 + \text{BUN}/2.8 + \text{ETOH}/3.7) \]

Positive if osm gap \(\geq 10 \)

Causes: Methanol, Ethylene glycol, mannitol, isopropanol (isopropyl alcohol), propylene glycol, lithium

If Osm Gap is \(\geq 50 \), almost certainly toxic alcohol induced

Notes:

- **If no BD is available, 24.2 – serum bicarb can be used as a poor man’s substitute**
- The more complex but correct formula for SID is \((\text{Na} + \text{K} + \text{Ionized Mg} + \text{ICal} - \text{Cl}) \). If this formula is used, then normal should be considered 42. In clinical practice, if the patient is not hyperkalemic, this more complex formula is not necessary.