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EDITORIAL COMMENT
Intrarenal Venous Flow
A Window Into the Congestive Kidney Failure
Phenotype of Heart Failure?*
W.H. Wilson Tang, MD,a,b Takeshi Kitai, MD, PHDb
A lthough the importance of congestion in the
disease progression of heart failure has long
been recognized (1), much has focused on

how cardiac impairment can lead to renal dysfunc-
tion. Over the past decade, there is increasing recog-
nition that the ability of the kidneys to compensate
for fluid overload can be influenced not only by
reduced arterial perfusion or underlying intrinsic
renal abnormalities, but also by increased venous
pressure (2–4). However, unlike the heart, the lack
of reliable bedside tools that can provide insights
into real-time renal physiology has somewhat limited
our abilities to better understand the factors contrib-
uting to cardio-renal syndrome. To date, clinicians
rely on surrogates of venous congestion that are pri-
marily inferred by structural and vascular flow abnor-
malities in the right heart, inferior vena cava, or
hepatic veins (Figure 1) (5–7). Although there have
been promises of directly quantifying renal perfusion
using ultrasound contrast, they are yet to be clinically
applicable (8).

Being a versatile, noninvasive tool for evaluating
abnormal renal artery stenosis or obstructive urop-
athy, renal Doppler ultrasonography has rarely been
investigated for profiling renal hemodynamics in
the setting of heart failure. Recent reports have
suggested that estimating the degree of arterial
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renal blood flow with the renal resistive index
may identify higher-risk patients with heart failure
(9,10). Meanwhile, a low intrarenal venous imped-
ance index (VII) calculated from the renal venous
waveforms has been associated with raised renal
interstitial pressure caused by non–heart failure
conditions such as acute ureteral obstruction (11,12)
or diabetic nephropathy (13). In this issue of
JACC: Heart Failure, Iida et al. (14) systematically
examined distinct renal Doppler flow patterns in
patients with largely nonischemic heart failure sta-
bilized either following hospital admission or in the
outpatient setting. Interestingly, this patient cohort
included w40% patients with either heart failure
with preserved ejection fraction or pulmonary arte-
rial hypertension. Despite relatively preserved car-
diac and renal function, 43% had advanced (New
York Heart Association functional class III to IV)
symptoms and yet only 28% demonstrated an in-
crease in right atrial pressures. The authors first
observed that VII was difficult to quantify in this
population, in part because there were disruptions of
the normal continuous intrarenal venous flow (IRVF)
pattern. They therefore speculated that the IRVF
patterns were largely attributable to altered renal
interstitial pressures in the setting of increased
venous congestion (as reflected by estimated right
atrial pressure). Indeed, venous congestion can pro-
duce elevated right-side pressures that transmit
backward into the renal parenchyma similar to that
observed in hepatic venous flow patterns (Figure 1),
leading to increased pulsatility of the IRVF signal.
This pulsatility (so-called “discontinuous IRVF
pattern”) may reflect increased compliance of renal
parenchyma and its venous vessels in response
to increasing venous pressure within the encapsu-
lated kidneys. It can manifest by biphasic forward
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FIGURE 1 Ultrasound Patterns Across the Spectrum of RAP

RA ¼ right atrium; RAP ¼ right atrial pressure; RI ¼ resistive index.
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velocity that peaks during each cardiac cycle
(biphasic pattern), or a gradual diminution of veloc-
ity throughout systole that evolves into a diastolic-
only flow pattern (monophasic pattern). Because
patients in this study were relatively lean (mean
body mass index of 23 kg/m2) and the fact that all
IRVF measurements were performed by a single in-
dividual, the technical feasibility and consistency of
Doppler waveform sampling of interlobular vessels
in a more diverse group of patients and sonographer
should be investigated. It is also important to note
that discontinuous or biphasic patterns of IRVF and
lower VII are not specific to heart failure, and have
been described in normal pregnancies to at least in
part be explained by reduced vascular compliance
from increased renal interstitial pressure subsequent
to partial obstruction of the ureters by the gravid
uterus (15). Because not all patients had direct
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invasive cardiac or renal hemodynamic assessments
concurrent to their Doppler ultrasounds, mechanistic
relationships between discontinuous venous flow
patterns and raised renal interstitial pressures
remain hypothesis-generating.

Another interesting finding of the study was the
fact that IRVF patterns, rather than renal resistive
index, provided incremental prognostic value. To
put their findings into perspective, over one-half of
the patient cohort (54%) exhibited a continuous
IRVF pattern that invariably had low right atrial
pressures (estimated <10 mm Hg) and favorable
prognosis (>95% survival at 1 year). In contrast,
about one-quarter of patients with discontinuous
IRVF, either with increased right atrial pressures
(26%) or monophasic patterns (23%), had the poorest
prognosis (<40% survival at 1 year). The fact that a
subset of patients with continuous IRVF pattern still
experienced worsening renal function (by rising
creatinine measures) was consistent with prior re-
ports showing favorable prognosis in those that
achieved decongestion and hemoconcentration
rather than acute kidney injury (16,17). Overall, these
findings are largely associative, and there is still a
lack of evidence to demonstrate the reversibility of
such abnormal IRVF patterns with any current
therapeutic strategy (diuretic agents, vasodilators, or
mechanical circulatory support). In other words, we
have yet to understand how recognizing IRVF pat-
terns can affect our therapeutic decision-making.
With the wide confidence interval of the multivar-
iate analyses, whether these IVRF patterns can pro-
vide incremental insights above and beyond other
estimates of venous congestion requires further
validation.

Despite these limitations, the study by Iida et al.
(14) may have given us a glimpse into a unique
window of a potential “congestive kidney failure”
phenotype of patients with heart failure and a dis-
rupted venous flow as a possible prodrome of the
dreaded cardiorenal syndrome. Clearly, alterations of
ultrasound patterns are evident across the venous
system as right atrial pressures rise (Figure 1), and the
ability to directly visualize IRVF gives credence to
the concept that impediment to renal venous outflow
can be identified and targeted for interventions. With
the excitement of newer neurohormonal therapies
and cardiac implantable electrical devices that pro-
vide mortality and morbidity benefits, these obser-
vations may remind us that the age-old cardiorenal
hypothesis of “congestive” heart failure may still be
relevant in the contemporary era (18), and that
effective handling of salt and water by the nephrons
requires an intact and intricate balance between both
the inflow and outflow of the renal vasculature.
Beyond altered autoregulation and neurohormonal
activation, we need to better understand the evolu-
tion of these IRVF patterns in the natural history of
cardio-renal syndrome, and should aim to develop
targeted strategies that can better decongest the
kidneys.
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