Review Article

Uses and mechanisms of apnoeic oxygenation: a narrative review

C. Lyons1 and M. Callaghan2

1 Specialist Trainee, Department of Anaesthesia, Mater Misericordiae University Hospital, Dublin, Ireland
2 Consultant, Department of Anaesthesia, Galway University Hospitals, Galway, Ireland

Summary

Apnoeic oxygenation refers to oxygenation in the absence of spontaneous respiration or mechanical ventilation. It has been described in humans for over half a century and has seen a resurgence in interest given its potential to delay oxygen desaturation during airway management, especially with the advent of high-flow nasal cannulae. This narrative review summarises our current understanding of the mechanisms of gas exchange during apnoeic oxygenation and its diverse range of clinical applications, including its use at induction of anaesthesia and for the facilitation of ‘tubeless anaesthesia’. Additional discussion covers use in critical care, obese, obstetric and paediatric sub-populations. The article also highlights current research efforts aiming to enhance the evidence base for the use of this technique.

Introduction

The earliest description of apnoeic oxygenation was probably by Hook in 1667, achieved by continuous inflation of punctured canine lungs [1]. At the turn of the last century, intra-tracheal insufflation of oxygen in animals was described, more akin to modern methods [2].

In 1946, Comroe and Dripps documented two cases of apnoeic oxygenation via a tracheal tube in man; both patients having suffered respiratory arrest secondary to intracranial pathologies which were ultimately fatal [3]. Enghoff et al. demonstrated a similar technique in anaesthetised patients in 1951, and emphasised the essential conditions for success as ‘a high percentage of oxygen in the lungs and in the dead space, a free airway and an adequate circulation’ [4], which remain the cornerstones of the modern-day technique. Apnoeic oxygenation has been applied in diverse clinical scenarios, commonly in the form of an apnoea test for brain steam death and more recently via nasal cannulae during airway management and ‘tubeless anaesthesia’. This article summarises the underlying physiology and its clinical applications.

Methods

We conducted a literature search (PubMed and Scopus) in January 2018, repeated in April 2018, to identify relevant articles. Key search terms included: ‘apnoeic oxygenation’, ‘THRIVE’, ‘high-flow nasal oxygen’, ‘apnoea test’ and ‘ventilatory mass flow’. No date limits were set. The abstracts of identified articles were assessed for relevance, along with screening of their references for further relevant publications. A full-text review of 374 articles was undertaken, of which 116 were included in the final review.

Physiology

In the apnoeic patient, extraction of oxygen from the alveolus into the blood causes alveolar pressure to become...
subatmospheric, generating a pressure gradient which enables the movement of additional administered oxygen into the alveolus [5]. This is termed ‘aventilatory mass flow’ [6], formerly referred to as ‘diffusion respiration’ [7] or ‘apnoeic diffusion of oxygenation’ [8]. Apnoeic oxygenation is facilitated by ‘denitrogenation’ of the patient’s lungs, by breathing O₂ for a suitable duration, before the onset of apnoea. Otherwise, the persistence of nitrogen in the lung, combined with accumulating carbon dioxide, diminishes the pressure gradient available for oxygen transfer to the alveolus and hastens the onset of hypoxaemia [9]. Re-nitrogenation is prevented by the delivery of a fraction of inspired oxygen of 1.0 during the apnoeic period [10].

In this theory, the subatmospheric alveolar pressure also promotes carbon dioxide transfer from the blood to the alveolus. The pressure gradient is not immediately obliterated as the degree of oxygen extraction from the alveolus exceeds the degree of carbon dioxide return to the alveolus, given the capacitance of the body to buffer and store carbon dioxide, for example, bicarbonate formation by carbonic anhydrase [11]. With time, alveolar accumulation of carbon dioxide diminishes the pressure gradient for oxygen transfer to the alveolus and limits the duration of success of aventilatory mass flow [10]. ‘Hypoventilatory mass flow’ has been proposed as an alternative term to ‘aventilatory mass flow’ because, whenever carbon dioxide is being cleared from the alveolus, this implies ‘ventilation’ and is therefore not a true aventilatory state [12]. Additionally, the term acknowledges that carbon dioxide removal from the alveolus leads to a decline in alveolar pressure that can facilitate mass flow of oxygen into the alveolus or accommodate the transfer of further carbon dioxide from the blood.

The theory above also accommodates a possible role for cardiogenic oscillations, which are airflow alterations caused by contractions of the heart and may assist with gas exchange during apnoea [13]. The change in heart volume during the cardiac cycle is believed to promote gas movement by altering intrathoracic pressure [6, 14]. Additional contributions to pulsatile gas flow may arise from direct compression and expansion of the lung parenchyma adjacent to the heart and from pulsatile flow in the pulmonary vasculature [15, 16]. Gas mixing secondary to cardiogenic oscillations is believed to occur predominantly in the conducting airways, but can also arise in the acini [16]. The magnitude of its contribution to overall gas exchange in the apnoeic state remains unknown; oscillations may be enhanced by the apnoea-associated respiratory acidosis, which stimulates a tachycardia. The proposed mechanisms of apnoeic oxygenation are illustrated in Fig. 1.

Carbon dioxide clearance

The elimination of carbon dioxide from the body is limited during apnoeic oxygenation, such that hypercarbia and acidaemia ensue over time. During normal spontaneous ventilation, partial pressure of carbon dioxide (PCO₂) is highest in mixed venous blood (PᵥCO₂), then in the alveolus (PₐCO₂), then in arterial blood (PₐCO₂). During the initial period of apnoeic oxygenation, venous, alveolar and arterial partial pressures of carbon dioxide transiently reach equilibrium [17]. Thereafter, the arteriovenous carbon dioxide gradient described above becomes reversed, with arterial PCO₂ exceeding venous PCO₂. The reversal is attributed to retention of carbon dioxide within the pulmonary circulation due to impaired gas exchange, and is compounded by the Haldane effect, wherein oxygenation

Figure 1 Apnoeic oxygenation involves the mass flow of a high fraction of inspired oxygen, aided by flushing of dead space, generation of positive airway pressure and cardiogenic oscillations. Higher flow rates can enable clearance of carbon dioxide.
of arterial blood displaces carbon dioxide from haemoglobin [18, 19].

The degree of carbon dioxide accumulation that occurs in the blood during the first minute of apnoea is greater than in any subsequent minute [19, 20]. Stock demonstrated a mean \(\text{PaCO}_2 \) rise of 1.6 kPa during the first minute, followed by a rise of 0.45 kPa with each subsequent minute during complete airway obstruction in elective surgical patients, simulated by clamping the tracheal tube. Similar blood gas alterations have been observed during apnoea testing for brainstem death [19, 21, 22].

It is notable that some carbon dioxide clearance can occur, depending on the flow rate of administered gases and the proximity of their site of administration to the alveoli. Higher flow rates are believed to extend the region of turbulent gas flow more distally in the airways, resulting in improved gas exchange [23], sufficient to maintain a normocarbic state during apnoeic oxygenation in animals [24]. This degree of gas exchange has seldom been attained in human studies despite use of endobronchial catheter flow rates in excess of 0.5 l.kg.min\(^{-1}\) [25, 26]. High-flow nasal oxygen attenuates the rise of carbon dioxide in the blood, with mean elevations of 0.21 kPa.min\(^{-1}\) and 0.24 kPa.min\(^{-1}\) in two case series [12, 27]. Preceding apnoeic oxygenation with a period of hyperventilation does not exert a prolonged effect on lowering \(\text{PaCO}_2 \) [27].

The gradient between \(\text{PaCO}_2 \) and end-tidal carbon dioxide (ET\(\text{CO}_2\)) increases with apneoa duration (where the latter is measured at the first postapnoeic breath) [21]. Bohr hypothesised that this divergence was caused by atelectasis and ventilation–perfusion mismatch [28]. As a consequence, ET\(\text{CO}_2\) measurements progressively underestimate the hypercarbic burden [12, 27].

High-flow nasal oxygen: novel mechanisms

Apnoeic oxygenation can be achieved with any device that enables administration of oxygen into the respiratory tract, including facemask, nasal cannula, nasopharyngeal catheter, supraglottic airway device, rigid bronchoscope, tracheal tube and front-of-neck catheter. Oxygen insufflation can also occur through channels located in direct and videolaryngoscopes [29, 30].

High-flow nasal oxygen represents a recent breakthrough in the area of apnoeic oxygenation, enhancing both oxygenation and carbon dioxide clearance as compared with low-flow nasal oxygen [12, 27, 31]. Proposed mechanisms include reduced dilution of administered oxygen by nitrogen [32], enhanced dead space flushing [33, 34], positive airway pressure generation [35–41] and benefits derived from gas heating and humidification [42–44]. High-flow nasal oxygen promotes washout of gases from anatomical dead space, including more distal conducting airways, as demonstrated by scintigraphy studies in breath-holding subjects [33]. Sampling of inspired gases from tracheostomised patients has demonstrated a flow-dependent increase in inspired tracheal oxygen concentration and reduced rebreathing [33, 34].

Positive airway pressure generation by high-flow nasal oxygen increases end-expiratory lung impedance in spontaneously breathing patients [35, 36], which is consistent with an increase in end-expiratory lung volume and functional residual capacity [37]. It also assists with upper airway patency, as observed in patients with obstructive sleep apnoea, who have less inspiratory flow limitation with nasal insufflation [38]. A linear relationship exists between high-flow nasal oxygen flow rate and positive airway pressure generation in the nasopharynx of awake patients. Each 10-l increase in flow rate achieves an additional positive airway pressure of 0.5 cmH\(\text{2}_0\) with an open mouth and 1 cmH\(\text{2}_0\) with a closed mouth, albeit with significant inter-patient variability [36, 39, 40]. Furthermore, the heating and humidification of administered oxygen improves airway function through enhanced gas flow and pulmonary compliance [42], maintenance of ciliary function [43] and avoidance of the bronchoconstrictor response that arises with cold, dry gases [44].

A paper in this issue of the journal proposes a novel additional mechanism that may be responsible [45].

Apnoeic oxygenation during airway management

Levitan coined the acronym ‘NODESAT’ (nasal oxygen during efforts at securing a tube) to describe apnoeic oxygenation using unwarmed, dry oxygen via standard nasal cannulae at 15 l.min\(^{-1}\) to extend safe apnoea time [46]. Patel et al. later used the acronym ‘THRIVE’ (transnasal humidified rapid insufflation ventilatory exchange) to describe apnoeic oxygenation via heated and humidified high-flow nasal cannulae [31]. A perceived advantage of nasal cannulae for apnoeic oxygenation is that they do not obstruct access to the airway during tracheal intubation. A disadvantage is that they can impair the facemask seal if the clinician undertakes bag-mask ventilation. Another limitation is that apnoeic oxygenation has no proven role as a rescue technique for oxygenation in the already desaturating patient.

Airway management guidelines now support the use of apnoeic oxygenation during laryngoscopy [47–50].
recent review, compromised predominantly of low-flow insufflation techniques, concluded that apnoeic oxygenation prolonged time to oxygen desaturation without discernible adverse effects [51].

Two randomised controlled trials have compared the use of high-flow nasal oxygen and facemask oxygenation during rapid sequence induction (RSI) of anaesthesia. Mir et al. were unable demonstrate a difference in arterial PO2 between the study groups; but given that time to intubation was twice as long in the high-flow nasal oxygen group, the authors implied that overall oxygenation had been improved [52]. Lodeniis et al. demonstrated a greater incidence of desaturation < 93% in the facemask group during RSI when both groups had comparable apnoea duration [53]. Exclusion criteria included a body mass index > 35 kg.m⁻², pregnancy and pre-operative requirement for non-invasive ventilation.

It is notable that published studies assessing the use of nasal oxygenation at induction of anaesthesia have combined its use as a pre-oxygenation and apnoeic oxygenation method, meaning that there is uncertainty whether advantage arises with high-flow nasal oxygen in both phases or in the apnoeic phase alone. It is possible that facemask pre-oxygenation (with an adequate seal for an adequate duration, with continuous positive airway pressure), is superior to nasal pre-oxygenation, as the latter can permit entrainment of room air by mouth. If so, nasal oxygen administration would be more suited as an isolated apnoeic technique. For example, the clinician can rest nasal cannulae on the forehead while undertaking facemask pre-oxygenation, and place them nasally with onset of apnoea or immediately before laryngoscopy (Fig. 2). Other potential advantages associated with this approach are the ability to measure end-tidal oxygen concentration during facemask oxygenation, and the avoidance of either an ineffective seal or barotrauma from dual use of high-flow nasal oxygen and facemask oxygenation.

We now review evidence for use of apnoeic oxygenation techniques in some specific situations.

Urgent intubation, respiratory failure and critical illness

Apnoeic oxygenation reduces the incidence of clinically significant hypoxaemia during emergency intubation according to a recent systematic review [54]. A mixture of low- and high-flow techniques was included, and studies differed in their methods of pre-oxygenation, and included emergency department, intensive care unit (ICU) and pre-hospital settings. The pooled absolute risk of clinically significant hypoxaemia was 27.6% in the ‘usual care’ group and 19.1% in the ‘apnoeic oxygenation’ group, offering a relative risk reduction of 30%.

Clinically significant desaturation during intubation is most likely to arise in those patients with acute respiratory failure. The potential for benefit from apnoeic oxygenation in this population is uncertain. A recent trial compared pre-oxygenation and apnoeic oxygenation with facemask pre-oxygenation alone during intubation for acute respiratory...

![Figure 2](image-url) An approach to pre-oxygenation and apnoeic oxygenation at induction of anaesthesia. During facemask pre-oxygenation, nasal cannulae are placed on the forehead (a). After induction of anaesthesia, optional bag-mask ventilation is followed by lowering of the cannulae to the nares (b). This enables apnoeic oxygenation while awaiting onset of neuromuscular blockade and during laryngoscopy (c).
failure in the ICU, with a 25% incidence of desaturation to $S_{\text{O}_2} < 80\%$ in both groups [55]. Another recent trial demonstrated a reduced incidence of desaturation when non-invasive ventilation was incorporated into the pre-oxygenation process in similar patients [56]. The intervention arm received pre-oxygenation with non-invasive ventilation and high-flow nasal oxygen followed by apnoeic oxygenation with high-flow nasal oxygen, while the control arm comprised pre-oxygenation with non-invasive ventilation alone without apnoeic oxygenation. Desaturation to $S_{\text{O}_2} < 80\%$ was more common in the control arm. Clarity may arise from an ongoing multi-centre randomised controlled trial comparing high-flow nasal oxygen and non-invasive ventilation pre-oxygenation in patients with respiratory failure [57].

Beyond a reduced incidence of clinically significant hypoxaemia at intubation, clinical studies up to now have been under-powered to demonstrate a reduction in other adverse events, such as arrhythmia and cardiac arrest. Nonetheless, continuous nasal oxygenation (low flow or high flow), forms part of ‘Plan A’ in the first iteration of the Difficult Airway Society guidelines for tracheal intubation of critically ill adults [58, 59].

Obesity

Obese patients experience a more rapid onset of hypoxaemia during apnoea [60], which can be delayed by apnoeic oxygenation. Baraka et al. assessed the impact of pre-oxygenation alone compared with pre-oxygenation followed by oxygen insufflation via a nasopharyngeal catheter on the time to desaturation of morbidly obese patients at induction of anaesthesia [61]. The insufflation group demonstrated a longer time to desaturation over a 4-min study period. Ramachandran et al. measured the effects of apnoeic oxygenation via naso cannulae at 5 l.min$^{-1}$ on obese patients at induction of anaesthesia while simulating a Cormack and Lehane grade-4 view during laryngoscopy [62]. Those patients who received nasal oxygen were more likely to maintain $S_{\text{O}_2} \geq 95\%$ over a 6-min study period. Published studies utilising high-flow nasal oxygen have contained few obese patients and the magnitude of benefit this population can derive from this intervention remains uncertain.

Obstetrics

Guidelines issued in 2015 by the Difficult Airway Society and Obstetric Anaesthetists’ Association for the management of difficult tracheal intubation in obstetric patients mention the potential role for apnoeic oxygenation via tight-fitting facemask, nasopharyngeal catheter or nasal cannulae, based on evidence from non-obstetric settings [63]. The All India Difficult Airway Association recommends the universal use of 15 l.min$^{-1}$ oxygen insufflation via nasal cannulae for obstetric general anaesthesia [64].

Pillai et al. undertook computational modelling of apnoeic oxygenation with high-flow nasal oxygen in ‘virtual parturients’ [65]: high-flow nasal oxygen increased the time to desaturation to 40% (an unusually low end-point) from 4.5 to 58 min. The clinical relevance of this modelling has been questioned and this magnitude of benefit has not yet been observed in clinical practice [66]. An ongoing trial (ACTRN12616000531415) aims to characterise the efficacy and safety of high-flow nasal oxygen as an isolated pre-oxygenation or apnoeic oxygenation technique in the obstetric population and is due for completion in 2019.

Paediatrics

Randomised controlled trials have shown a delayed time to oxygen desaturation with use of pharyngeal oxygen insufflation during elective tracheal intubation [29, 30]. In one study, apnoeic oxygenation with high-flow nasal oxygen at 1–2 l.kg.min$^{-1}$ reduced the incidence of desaturation during intubation when compared with a control arm that did not receive any supplemental oxygen during apnoea [67]. Another trial compared use of low-flow nasal oxygen at 0.2 l.kg.min$^{-1}$ (FIO$_2$ 1.0), high-flow nasal oxygen at 2 l.kg.min$^{-1}$ (FIO$_2$ 1.0), and high-flow nasal oxygen 2 l.kg.min$^{-1}$ (FIO$_2$ 0.3) at induction of anaesthesia [68]. Oxygen desaturation was the cause of study termination for all patients in this last group. However, for 35 of all 38 patients receiving an FIO$_2$ of 1.0, the study was terminated due to attainment of a transcutaneous PCO$_2$ of 8.7 kPa or an apnoea duration of 10 min, before oxygen desaturation occurred. Therefore, this study was unable to determine whether administration of 100% oxygen via high-flow nasal cannulae delays time to oxygen desaturation when compared with low-flow nasal cannulae [69].

Both aforementioned high-flow nasal oxygen studies did not demonstrate clearance of carbon dioxide when compared with control arms, questioning whether this is attainable in a paediatric population despite high-flow insufflation.

Tubeless anaesthesia

Short-duration laryngeal surgery in apnoeic patients with avoidance of tracheal intubation was first reported by Woodman in 1959, who concluded that the technique “affords the operator a completely relaxed patient plus an unobstructed view of the larynx” [70]. Recently, apnoeic oxygenation with high-flow nasal oxygen has enabled
tubeless anaesthesia for extended periods, in excess of that which is achievable with low-flow nasal oxygen and buccal oxygen administration (Fig. 3) [12, 27, 31, 71]. A summary of relevant case series is included in the Supporting Information (Table S1). Procedures have included vocal cord biopsy, injection thyroplasty and balloon dilatation of subglottic stenosis. One variation of the technique, undertaken by the authors of this article, involves pre-oxygenation with high-flow nasal oxygen followed by total intravenous anaesthesia with propofol and remifentanil infusions and administration of a neuromuscular blocking drug [12]. Airway patency is maintained with jaw thrust or laryngoscopy while apnoeic oxygenation is undertaken with high-flow nasal oxygen (FIO2 1.0) at flow rates of 80 l.min⁻¹. Intra-operative monitoring includes venous blood gas analysis at 15-min intervals. Techniques to manage oxygen desaturation include: jet ventilation; temporary tracheal intubation using a microlaryngoscopy tube via the suspension laryngoscope or removal of the suspension laryngoscope; followed by conventional airway management, such as bag-mask ventilation or supraglottic airway device insertion.

Randomised controlled trials comparing the risks and benefits of tubeless anaesthesia with high-flow nasal oxygen vs. more traditional airway management have not yet been undertaken. Optimal FIO2 and flow rate settings for this technique are also unknown. Compression and absorptionatelectasis leading to ventilation-perfusion mismatch are hypothesised as reasons for the limited duration of successful oxygenation in the unobstructed apnoeic patient [10]. There is an ongoing trial (NCT03458091) aiming to quantify changes in lung volume by electrical impedance tomography during use of high-flow nasal oxygen for tubeless anaesthesia.

The absence of a tracheal tube precludes intra-operative end-tidal carbon dioxide measurement. Some clinicians undertake arterial or venous blood gas analysis during the apnoeic period [12, 27], whereas others await ETCO2 measurement on completion of surgery [31, 71]. Clinicians must exert caution in interpreting ETCO2 measurements as they underestimate the rate of carbon dioxide accumulation, and consequently, underestimate the degree of acidaemia [12, 27]. Transcutaneous PCO2 measurement has also been used [12, 27].

Apnoeic oxygenation can be undertaken for rigid bronchoscopy with passive oxygen insufflation through the side port of the bronchoscope or a tracheal catheter [72, 73]. When low-flow insufflation is used, leak around the rigid bronchoscope can be prevented by packing the oropharynx with gauze [72]. Alternatively, high-flow nasal oxygen can exploit an incomplete seal around the bronchoscope in order to deliver oxygen to the lungs in an apnoeic state. High-flow administration of oxygen via the side port of a bronchoscope risks barotrauma if the path for gas egress becomes obstructed even for a brief period and is not recommended. Cases of tracheostomy formation under apnoeic oxygenation have also been described [74, 75].

Apnoeic oxygenation for the avoidance of lung movement

Apnoeic oxygenation of the deflated lung during one-lung ventilation reduces the likelihood of hypoxaemia and the need for resumption of double-lung ventilation [76, 77]. This can be achieved via an endobronchial suction catheter or, during bronchial anastomosis formation, via a surgically-placed catheter distal to the anastomosis.

Oxygen insufflation via a tracheal tube or endobronchial catheter has been used instead of conventional mechanical ventilation to improve surgical access during internal mammary artery harvest for coronary artery bypass grafting [26, 78].

Apnoeic oxygenation can enhance the quality of medical imaging by abolishing respiratory motion artefact, such as during computed tomography (CT) pulmonary angiography [79]. Apnoeic oxygenation can also prolong breath-holding in awake patients in order to maintain a static thorax for improved dose homogeneity during intensity-modulated radiotherapy [80].
Diagnosis of brain death
In the diagnosis of brain death, the absence of respiratory effort despite hypercapnia is consistent with absent brainstem respiratory reflexes and brainstem death. The apnoea test involves temporary suspension of mechanical ventilation, leading to hypercarbia and acidemia, and is typically terminated when a pre-determined \(P_aCO_2 \) is attained [81]. Hypoxaemia is prevented by oxygen delivered through the tracheal tube via a catheter, T-piece or self-inflating bag system. Failure to attain an adequate \(P_aCO_2 \) rise for successful testing can be due to enhanced carbon dioxide clearance from an excessively high flow of oxygen[82, 83].

Cardiac arrest
The potential utility of apnoeic oxygenation combined with continuous chest compressions during cardiopulmonary resuscitation is recognised in guidelines of the American Heart Association (AHA) and European Resuscitation Council but is not routinely recommended [84, 85]. The AHA highlights witnessed out-of-hospital cardiac arrest with a shockable rhythm as a circumstance where positive pressure ventilation can be delayed in order to deliver three cycles of continuous chest compressions[84].

The ability of passive decompression of the thorax to generate a negative intrathoracic pressure, aiding alveolar ventilation and venous return, is contested [86, 87]. Continuous oxygen insufflation in lieu of positive pressure ventilation via a modified tracheal tube demonstrated comparable outcomes in a small randomised controlled trial in humans [88]. A retrospective analysis demonstrated more neurologically favourable survival with passive oxygen delivery via an oral airway compared with bag-mask ventilation after witnessed out-of-hospital cardiac arrest with a shockable rhythm [89]. More recently, a case of apnoeic oxygenation with high-flow nasal oxygen during a brief intra-operative maternal cardiac arrest has been reported [90].

Extracorporeal carbon dioxide removal
Combined use of apnoeic oxygenation and extracorporeal carbon dioxide removal (ECCO\(_2\)R) has been achieved in patients with acute respiratory distress syndrome (ARDS) [91]. ‘Resting the lung’ using extracorporeal assistance for gas exchange reduces systemic and pulmonary inflammatory mediators in experimental acute respiratory distress syndrome when compared with a conventional lung-protective ventilation strategy [92], and has been proposed as a mechanism of limiting ventilator-induced lung injury [93, 94]. Continued improvements in ECCO\(_2\)R technologies, chiefly in the form of smaller dual lumen catheters for veno-venous ECCO\(_2\)R and reduced requirements for anticoagulation, may lead to greater use of ‘ultra-protective’ lung ventilation in the management of ARDS [95]. The results of multiple clinical trials are awaited[96].

Complications of apnoeic oxygenation
Hypercarbia, acidosis and the potential for hypoxaemia are key considerations for the clinician during apnoeic oxygenation. During testing for brain stem death, in addition to the patient’s respiratory acidosis, a mild metabolic acidosis of unknown cause also develops during apnoeic oxygenation [97]. The acidaemia increases cardiac output by stimulating a tachycardia and reducing systemic vascular resistance. Mean arterial pressure typically exhibits a modest increase or remains unchanged. Mean pulmonary arterial pressure increases due to hypercarbia [98]. Post-hypercapnic hypotension is brief, mild and occurs in a minority of cases. Cardiac rhythm typically remains unaffected in the absence of profound acidaemia. The propensity for arrhythmias is greatly increased at a \(pH<7.0\) and exponentially so at a \(pH<6.8\) [99].

The critically ill patient undergoing apnoea testing is particularly vulnerable to adverse events, which may lead to circulatory arrest [100]. Perhaps the greatest risk is the potential for clinicians to be overconfident on the reliability of this technique to maintain oxygenation. A minimum requirement for success is a degree of airway patency, and if this is not achievable even with jaw thrust or during difficult airway management, then the patient may desaturate more rapidly than expected.

Apnoeic oxygenation does not deliver a volatile agent to the lungs, so there must be a plan to ensure adequate anaesthesia during airway management to avoid accidental awareness [101]. Similarly, tubeless anaesthesia with apnoeic oxygenation requires total intravenous anaesthesia [12, 27].

Laser use combined with administration of supplemental oxygen via an open system, such as apnoeic oxygenation for tubeless microlaryngeal surgery, is regarded as a high-risk situation for an airway fire [102]. However, the likelihood of native tissues rather than a tracheal tube acting as a fuel source is contested [103, 104]. A case of airway fire has occurred with the use of diathermy for hard palate biopsy in a patient receiving high-flow nasal oxygen [105].

Barotrauma is a risk if there is no clear route for gas egress during apnoeic oxygenation. During testing for brain stem death, insufflation rates < 10 l.min\(^{-1}\), use of a
small catheter, placement of the catheter tip proximal to the carina or the use of non-catheter methods are all suggested as minimising this risk [82, 83]. Recent guidelines urge caution with simultaneous use of high-flow nasal oxygen and facemask ventilation [58]. Cases of pneumocephalus [106], pneumo-orbitus [107], epistaxis, subcutaneous emphysema, pneumomediastinum, pneumothorax [108, 109], oesophageal rupture and gastric rupture [110, 111] have all been reported with use of nasal cannulae, largely in paediatrics.

In the presence of upper airway soiling from bleeding or regurgitation, pharyngeal contents can be dispersed with high-flow oxygen insufflation, and a case of aspiration of gastric contents has been reported [112]. However, gastric insufflation has not been observed using ultrasonographic and computed tomographic assessment of gastric volumes [67, 113, 114]. Apnoeic oxygenation can be advantageous when incorporated into RSI techniques in circumstances where positive pressure ventilation before intubation could confer particular harm, such as the patient with tracheoesophageal fistula or pyloric stenosis [115, 116].

Conclusions

Apnoeic oxygenation can be employed in diverse clinical settings. It holds promise in reducing the likelihood of hypoxaemia as a component of a thorough airway management plan. Enthusiasm for apnoeic oxygenation needs to be accompanied with healthy caution and a greater degree of scientific rigour in emerging areas of use, such as tubeless anaesthesia. Further assessment is needed regarding which sub-populations are most likely to derive benefit from apnoeic oxygenation, the effects of varying flow rates and P:F ratios, methods of attenuating carbon dioxide elevation and its potential for reducing the risk of lung injury alongside advancements in extracorporeal technologies.

Acknowledgements

No external funding or competing interests declared.

References

1. Hook M. An account of an experiment made by Mr. Hook, of preserving animals alive by blowing through their lungs with bellows. Philosophical Transactions of the Royal Society of London 1666; 2: 539–40.

Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Case series of tubeless anaesthesia using apnoeic oxygenation with high-flow nasal cannulae in adult populations.