The Role of Venous Return in Critical Illness and Shock—Part I: Physiology

Duane J. Funk, MD1,2; Eric Jacobsohn, MD1,2; Anand Kumar, MD1,3

Objective: To provide a conceptual and clinical review of the physiology of the venous system as it relates to cardiac function in health and disease.

Data: An integration of venous and cardiac physiology under normal conditions, critical illness, and resuscitation.

Summary: The usual teaching of cardiac physiology focuses on left ventricular function. As a result of the wide array of shock states with which intensivists contend, an approach that takes into account the function of the venous system and its interaction with the right and left heart may be more useful. This two-part review focuses on the function of the venous system and right heart under normal and stressed conditions. The first part describes the basic physiology of the venous system, and part two focuses on the role of the venous system in different pathophysiologic states, particularly shock.

Conclusion: An improved understanding of the role of the venous system in health and disease will allow intensivists to better appreciate the complex circulatory physiology of shock and may allow for better hemodynamic management of this disorder. (Crit Care Med 2013; 41:255–262)

Key Words: cardiogenic shock; cardiovascular physiology; hemodynamics; hemorrhagic shock; obstructive shock; septic shock

In the modern era, the typical hemodynamic analysis of cardiovascular function focuses on left ventricular (LV) physiology. The reason for this is the primacy of ischemic heart disease (which most obviously affects LV function) in a cause of death in the developed world as well as the complex pathophysiology of the right ventricle (RV)/venous system, which results in practical difficulties in assessing RV/venous performance in the critically ill. An approach that centers on LV function is appropriate for most cardiologists given their focus on management of myocardial infarction and congestive heart failure. However, intensivists deal with a broader array of cardiovascular perturbations including shock states in which vascular dysfunction and other extracardiac perturbations may dominate the clinical picture (e.g., septic, hypovolemic, or obstructive shock). An approach to cardiovascular physiology that incorporates both cardiac and vascular elements may be more useful to intensivists than one that focuses exclusively on LV physiology.

This two-part review discusses the role of the heart and venous system in regulating venous return (VR) and cardiac output (CO). The primary determinants of VR are explained and alterations in VR in different pathophysiologic states are described. In the second part of this review, the physiology of VR is graphically integrated with RV physiology in the context of a variety of pathophysiologic states including shock. In addition, the effects of common therapies for the shock states (fluid administration, vasopressor and inotropic support, and mechanical ventilation) are examined in relation to their impact on VR and CO interactions.

FUNCTION OF THE VENOUS SYSTEM

The main functions of the systemic venous system are to act as a conduit to return blood to the heart from the periphery and to serve as a reservoir of the circulating blood volume. Although the cardiovascular circuit is a two-compartment model comprising both a systemic and pulmonary circuit, >80% of the blood volume held in veins is in the systemic venous circulation with three fourths of that in small veins and venules (1, 2) (Table 1). The pulmonary veins contain only a small blood volume and left atrial pressure has a relatively modest effect on left heart function. For these reasons, the physiology of VR can be described, in practical terms, as the physiology of VR to the heart.

Veins have a compliance 30 times greater than arteries and contain approximately 70% of the total blood volume compared with only 18% for the arteries (3–5). Because of the
high compliance of veins, large changes in blood volume are not associated with significant changes in venous transmural pressure. These features make the venous system an ideal blood reservoir that can maintain filling of the right heart despite significant variations in circulatory volume. The veins of the splanchnic bed alone hold approximately 20% to 33% of the total blood volume (6, 7).

Hagen-Poiseille’s law is central to the understanding of both VR and CO. This law (analogous to Ohm’s law of electrical current flow) states that the fluid flow (Q) through a system (such as the cardiovascular circuit) is related to the pressure drop across the system divided by the resistance of the system:

\[Q = \frac{P_1 - P_2}{R} \]

where \(P_1 \) is upstream pressure, \(P_2 \) is downstream pressure, and R is resistance to flow.

Left heart output (i.e., CO) and flow through the systemic circulation are commonly described using a variation of Hagen-Poiseille’s law. The difference between mean arterial pressure (MAP [\(P_{\text{a}} \)]) and right atrial pressure (\(P_{\text{RA}} \)) is the pressure drop across the system and systemic vascular resistance (SVR) represents resistance to flow through the circuit:

\[CO = \frac{MAP - P_{RA}}{SVR} \]

Because CO must equal VR, it is intuitive that VR to the right heart can be similarly described:

\[VR = \frac{P_{\text{ms}} - P_{RA}}{R_v} \]

where \(P_{\text{ms}} \) is the mean systemic pressure of the circulation and \(R_v \) is the resistance to VR. The \(P_{\text{ms}} \) is the upstream pressure for the venous circulation, whereas \(P_{RA} \) is again the downstream pressure (as it is in the equation describing systemic blood flow). This equation represents the application of Hagen-Poiseille’s law to the venous circulation. Note that this conceptual framework suggests that arterial pressure is unrelated to VR and that the flow into the systemic arterial circuit is only relevant insofar as it is required to maintain the volume of the venous reservoir. The concept of \(P_{\text{ms}} \) is described more fully subsequently.

Note that resistance to flow in both equations (SVR and \(R_v \)) is directly proportional to the length of the blood vessels (l), the viscosity of blood (\(\eta \)), and it is inversely proportional to the radius (r) of the vessels to the fourth power. Mathematically:

\[R = \frac{8nl}{\pi r^4} \]

In most pathophysiologic analyses, the radius and length of the conduit are emphasized in the assessment of resistance to flow; viscosity is ignored. However, in clinical settings, liters of low-viscosity (relative to whole blood) crystalloids or colloids may be administered over short periods. Furthermore, priming a cardiopulmonary bypass or extracorporeal membrane oxygenation circuit also involves administration of large amounts of low viscosity fluids. In these settings, alterations in blood viscosity resulting from hemodilution may provide a significant contribution to changes in resistance (8, 9).

Although the most common theoretical construct of cardiac function used by clinicians suggests that the left heart plays a major role in the regulation of CO (three of the four determinants of left heart CO, that is, preload, heart rate, and contractility, are intrinsically cardiac-related indices), the VR equation suggests cardiac function plays only an indirect role in the governance of VR. The only way that cardiac function can affect VR is by altering \(P_{RA} \) and thereby changing the driving pressure gradient. As a consequence of the normal modest operating range of pressures in the venous circuit (8–12 mm Hg in venules to 1–2 mm Hg in the vena cava/right atrium) (10), small changes in \(P_{RA} \) can drive very large changes in VR. Given that CO and VR must be equal in a closed system, the obvious corollary is that CO, under most physiological and pathophysiological conditions, is not primarily dependent on LV cardiac function, but on VR to the right heart.

Further to this issue, CO/VR is, in fact, determined by the interaction of the heart as a whole (inclusive of the right heart, pulmonary circuit, and left heart characteristics) with the systemic vascular circuit, not by any individual element. The elements contributing to cardiac function in this context include the loads on and compliance of the right and left ventricles and the compliance and resistance of the pulmonary circuit. For the sake of simplicity, our subsequent discussion often focuses on right heart function but it should be understood that right heart function in this context represents an amalgam of all influences on the heart as a whole.

To appreciate VR physiology, three related factors must be appreciated: the concepts of \(P_{\text{ms}} \), stressed and unstressed volumes, and venous resistance (\(R_v \)). The concept of \(P_{\text{ms}} \) dates back to the late 1800s when Bayliss and Starling surmised that if the circulation was transiently halted, arterial pressure would fall and venous pressure would rise (11). They reasoned that the pressure in the entire system during cardiac standstill would equilibrate at what they termed \(P_{\text{ms}} \). After blood in the circulatory system started flowing again, upstream (arterial) pressure would rise and downstream (venous) pressure would

<table>
<thead>
<tr>
<th>Structure</th>
<th>Percentage of Total Blood Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic venous system</td>
<td>64</td>
</tr>
<tr>
<td>Systemic arterial system</td>
<td>13</td>
</tr>
<tr>
<td>Capillaries</td>
<td>7</td>
</tr>
<tr>
<td>Pulmonary circuit</td>
<td>9</td>
</tr>
<tr>
<td>Heart</td>
<td>7</td>
</tr>
</tbody>
</table>

Critical Care Medicine

Figure 1. A. Concept of stressed and unstressed blood volume. The volume within the main container represents the systemic venous blood volume (Vt) and the level of the opening of the outlet conduit divides Vt into stressed volume (Vs) above and unstressed volume (Vo) below the level of the conduit. Only Vt (i.e., volume above the conduit level) contributes to the outflow driving pressure (analogous to mean systemic pressure [Pms] in the conduit). The blood leaves the container at a rate that is dependent on the pressure (Pms) exerted by the fluid above the opening (i.e., Vt). The blood below the opening (i.e., Vo) does not affect the outflow pressure or flow. Moving the entrance to the conduit down increases Vt and the outflow pressure (without changing Vt) resulting in greater flow out of the tub. In contrast, increasing the total volume without moving the conduit opening increases Vt in addition to Vt, outflow pressure, and flow. In the body, increasing Vt in the cardiovascular circuit by either altering the relative proportions of blood volume (Vt vs. Vo) or adding to Vt with fluids will increase outflow pressure (Pms) and venous return. Right atrial pressure (PRA) represents the downstream pressure and the outflow conduit diameter and length as well as blood viscosity define resistance to venous return (PR). Adapted from Bressack MA, Raffin TA: Importance of venous return, venous resistance, and mean circulatory pressure in the physiology and management of shock. Chest 1987; 92:906–912.

B. Graphic representation of Vt, Vs, and Vo in relation to vascular compliance (C) and vascular transmural pressure (i.e., Pms). If the container is empty and the volume in the container and the pressure (at the level of the conduit) are graphically displayed, slow replacement of the fluid would result in a linear increase in volume but pressure would remain flat until the pressure transducer at the level of the conduit opening was submerged. Thereafter, the pressure would increase linearly to the limit of filling of the container. The slope of the line between Vt and Vt (defining stressed volume) would represent elastance (E = ΔP/ΔV). Elastance is the inverse of compliance so compliance would be defined as C = ΔV/ΔP. However, ΔV is stressed volume (Vt - Vo - Vo = Vt - Vt) and the transmural pressure is analogous to Pms. Compliance is equivalent to Vt - Vt/Pms. A simple rearrangement produces the equation defining Pms in the text: \(P = \frac{\Delta V}{\Delta P} \).

The value of Pms in the body is described by the equation:

\[P_{ms} = \frac{V_s}{C_{sw}} \]

where Vs is stressed blood volume and C is systemic compliance (mean compliance of the cardiovascular circuit). The latter approximates the compliance of the venous reservoir.

Unstressed intravascular volume can be defined as that volume required to fill the circulatory system to capacity without any increase in transmural pressure (2). Stressed volume would be that amount that, when added to the unstressed volume, generates the vascular transmural pressure. To grasp the concept of stressed and unstressed volumes in the circulatory system, it is helpful to understand that only a portion of the total blood volume (Vt) contributes to the residual pressure (i.e., Pms) in the circulation during cardiac standstill. Passive exsanguination of an anticoagulated experimental animal would result in a large blood loss. The external, exsanguinated volume would represent the stressed blood volume (Vs). The amount remaining in the circulation would be the unstressed volume (Vo).

Figures 1A and 1B illustrate these concepts. As discussed in the figure legend, the equation for Pms can be written as:

\[P_{ms} = \frac{V_s - V_o}{C} \]

This equation suggests that Pms can be altered through two basic mechanisms: (1) a change in the total volume in the reservoir (Vt); or (2) a change in the proportion of Vo and Vs (5). Under ideal circumstances, adding or removing volume should increase and decrease Vt and Vs, respectively, without altering Vo. An alteration of autonomic tone, catecholamine stress responses, or infusion of exogenous vasoactive substances will alter the ratio of Vs to Vo without a change in C (12–14). Although some formulations suggest that compliance is directly altered by sympathetic stimulation, compliance in
the model should be considered to be an aggregate static (i.e., passive) mechanical property of the vessel walls (2, 7).

Approximately 20% to 30% (approximately 1.5L) of a typical human’s total blood volume is stressed volume (6). Under normal conditions, human P\text{ms} has been measured at approximately 8–10 mm Hg (15–17). With that information, the compliance of the human vascular bed can be calculated to be \(~0.187\) L/mm Hg\(^{-1}\) (18–22). Absent autonomic influences, infusion of 1L of fluid would therefore raise the P\text{ms} by 5.3 mm Hg (1 L/0.187 L-mm Hg\(^{-1}\)).

The denominator in the equation for VR, the resistance to VR or R\text{v}, is the other major concept that must be explored. The same basic determinants of resistance that apply for the SVR also apply to R\text{v}, that is, R\text{v} is directly proportional to the length of the venous circuit and the blood viscosity and is inversely related to the fourth power of the mean radius (r\(^4\)).

The R\text{v} depends on the resistance and capacitance of the different portions of the peripheral circulation. The cross-sectional area and radius of the venous system varies tremendously between the venules and small veins as compared with the large veins and vena cava. This division effectively creates two compartments. The small veins and venules with a very large cross-sectional area contribute little to R\text{v} and primarily serve as the venous reservoir. The cross-sectional area of the vena cava and large veins is small; these vessels act primarily as a conduit and account for the large majority of venous resistance (R\text{v}). They make a relatively small contribution to the volume of the venous reservoir. Increased autonomic tone or administration of vasopressor compounds creates countervailing effects in increased stressed volume and P\text{ms} in the reservoir compartment (which increases VR) but decreased mean radius in the vena cava and large veins (which decreases VR). Decreases in autonomic tone and vasodilators have the opposite effect.

The effective length of the venous circulation through which blood passes also affects R\text{v}. The venous system is not a system of uniform length and volume of veins and venules. Some parts of the venous system have longer, slower paths for flow, whereas others are shorter and faster. This has been described as short- and long-time constant beds (23, 24). The time constant, or \(\tau\), of a vascular bed is determined by the volume of the bed divided by the flow through it. Among vascular beds with varying time constants, the renal vascular bed has a low volume but rapid flow, giving it a fast time constant, or \(\tau\). In contrast, the skin has a large volume and slow flow, giving it a slow time constant, or \(\tau\). The fraction of blood distributed between these tissue beds with fast and slow time constants is called F\text{f} and F\text{s}, respectively. Autonomic alterations/endothelial factors and exogenous vasoactive substances, in addition to generating changes in V\text{s} of the venous reservoir and cross-sectional area of the venous circuit, can also result in redistribution of venous flow between long-time constant and short-time constant beds. A redistribution of blood from predominantly \(\tau\) to \(\tau\) will have the effect of reducing R\text{v} and increasing VR.

Blood viscosity has usually been considered to have negligible effects on VR and CO in most analyses. However, recent evidence suggests that the modest increases in VR/CO associated with crystalloid infusion are generated, in part, through reductions in blood viscosity (resulting in decreased R\text{v}) in addition to any effects on P\text{ms} (9).

Although VR is determined by P\text{ms}, P\text{ra}, and R\text{v} over a wide variety of physiologic and pathophysiologic conditions, VR is also limited by the mechanics of the respiratory system. Within the thorax, the heart and vascular structures are exposed to pleural pressure (P\text{pl}) that varies with the respiratory cycle. Outside of the thorax, veins are exposed to relatively constant pressures within the body compartments that approximate (under normal conditions) atmospheric pressure (P\text{atm}). Normally, P\text{ra} exceeds P\text{pl} and represents the downstream opposing pressure to flow in the numerator of the VR equation (P\text{ms} – P\text{pl}). However, during inspiration, P\text{pl} becomes increasingly negative. This negative pleural (intrathoracic) pressure is transmitted to the right heart circuit. As a consequence, venous pressures and P\text{ra} may transiently fall below P\text{ms}. Because the major extrathoracic veins are surrounded by body compartment pressures that normally approximate P\text{atm}, they collapse at the point where they enter the thoracic cavity and then act as Starling resisters (25, 26). Effectively, P\text{atm} becomes the downstream pressure opposing venous flow in the numerator of the VR equation (P\text{ms} – P\text{atm}). Blood flow instantaneously and transiently ceases. As flow is halted, the pressure in the proximal thoracic veins and vena cava rapidly rises until it equilibrates with P\text{ms} and the veins open again (because P\text{ms} is greater than P\text{pl}) and flow is re-established. This sequence cycles rapidly limiting flow during inspiration until positive intrathoracic pressures are re-established with expiration. Then with the next inspiration, the entire cycle repeats itself. As a consequence of this effect, VR reaches a plateau when the transmural pressure of P\text{ra} is 0 mm Hg (i.e., atmospheric pressure) in the spontaneously breathing subject.

The graphical representation of the equation for VR is depicted in Figure 2. VR is maximal when the P\text{ra} (the downstream pressure) is 0 mm Hg and the gradient between P\text{ms} and P\text{ra} is greatest. If P\text{ra} falls below 0 mm Hg, flow is limited by the collapse of the extrathoracic veins (as described previously), and VR remains at a plateau. VR falls as P\text{ra} increases. According to the equation for VR (VR = P\text{ms} – P\text{ra}/R\text{v}), VR can only be 0 when there is no pressure gradient (P\text{ms} – P\text{ra} = 0). This occurs at the intersection of the VR curve with the abscissa (horizontal axis), VR = 0.

The slope of the portion of the VR curve at P\text{ra} > 0 (i.e., the diagonal portion of the VR curve) represents the difference in flow (VR) divided by the pressure differential at different points of P\text{ra} (i.e., slope = Q/P). Because resistance is, by definition, driving pressure divided by flow (P/Q), the inverse of the slope of the VR curve represents R\text{v} (equations shown in Fig. 2).

Effect of Different Circulatory Manipulations on VR

There are a limited number of ways to change VR. Manipulating either P\text{ms} (and its constitutive factors V\text{t}, V\text{s}, and V\text{o}) and/or resistance to VR (R\text{v}) will lead to changes in the shape and position of the VR curves.
Cardiac Function and Its Relationship to VR

The curves discussed to this point describe a range of possible VR values under different conditions of the venous system (P_{ms} and R_v) and cardiac function (as reflected by P_{RA}). To define VR under any given condition, additional information is needed. The Starling response curve describes CO for any given level of cardiac filling (ventricular end-diastolic volume). A closely related, analogous cardiac function curve can be generated using ventricular end-diastolic pressure or P_{RA}. Although this analytic approach is usually applied to the left heart, the right ventricle operates on the same principle. The curve shifts upward with increased contractility or decreased afterload and downward with decreased contractility or increased afterload (Fig. 4). Isolated diastolic dysfunction (e.g., acute ischemia) or any decrease in effective cardiac compliance (e.g., in association with increased pericardial or intrathoracic pressure) causes a parallel rightward shift of the curve (Fig. 4). There is some ability of the right ventricle to increase its contractility with increases in RV afterload through homeometric autoregulation (also known as the Anrep...
Effects of Therapeutic Interventions

Although there is often an assumption that common interventions have discrete hemodynamic effects, even the simplest interventions generate several physiological responses affecting both the VR and cardiac function curves. The most common understanding of the hemodynamic effect of a fluid bolus is that it increases \(P_{RA} \), leading to an augmentation of CO through the Frank-Starling mechanism. However, this is an incomplete description and ignores the effect of the venous system. Infusion of isoviscous fluid (i.e., whole blood) increases \(V_t \) and \(V_s \) without a change in \(V_o \) resulting in an increase in \(P_{ms} \) (Fig. 6).

The VR curve shifts parallel and to right (Fig. 6, point A to B). This causes the curve to intersect the ordinate at a higher VR/CO. For the most part, a fluid bolus increases VR by increasing \(P_{ms} \) and causing an increase in flow to the right heart, thereby taking advantage of the Frank-Starling mechanism to increase CO. However, this parallel shift in the VR curve does not fully account for the increased CO when crystalloid is infused.

Large amounts of crystalloid or colloid infusion (without red blood cells) results in transient hemodilution. Red blood cells represent a substantial component of blood viscosity. Because blood viscosity is a component of resistance for both the VR and systemic flow (arterial) equations, reduction of viscosity associated with crystalloid/colloid infusion results in a modest reduction of resistance to both venous and arterial flow. The decreased viscosity reduces \(R_s \), so the slope of the VR curve becomes steeper (Fig. 6, point B to C). The decreased viscosity also leads to reduced pulmonary arterial afterload yielding an upward shift of the right ventricular Starling curve (Fig. 6, point C to D). Both of these effects tend to increase CO/VR. Because red blood cells account for the majority of blood viscosity, infusion of significant volumes of packed red cells will yield opposite effects. These viscosity effects are not seen with the infusion of whole blood and are usually ignored for the sake of simplicity in most analyses of VR/right heart interactions (including subsequent graphic analyses in this review).

Vasoactive compounds have even more complicated effects. Pure vasopressors such as phenylephrine and vasopressin increase \(R_s \) (decreased VR slope without a change in \(P_{ms} \)) as a consequence of vasoconstriction of large veins and the vena cava (Fig. 7, point A to B) (32, 33). This will tend to decrease VR. However, pure vasopressors also constrict venules and small veins and this increases the relative proportion of \(V_s \) to \(V_o \). This will increase \(P_{ms} \) and tend to offset some of the decrease in VR (shifting the VR intercept with the abscissa \([P_{ms}] \) to the right; Fig. 7, point B to C). Pure vasoconstrictors also usually generate an increased ventricular afterload (shifting the ventricular function curve downward; Fig. 7, point C to D). This again tends to decrease VR/CO.

If one draws a line perpendicular from the intersection of any points on the curve to the abscissa of the VR graph, the
intersection represents P_{RA}. With the addition of a pure vasoconstrictor, the net effect (shift from point A to point D in Fig. 7) is a decrease in VR/CO with an increase in the measured P_{RA}. This variance between estimated ventricular pressure and volumes is why static predictors of preload such as P_{RA} are inadequate in predicting CO and volume responsiveness in critically ill patients (9, 34, 35) and even in normal subjects (36). In summary, the net clinical effect of pure vasopressor administration is usually a decrease in VR/CO with an increase in P_{RA} and related filling pressures.

Inodilators like dobutamine and milrinone generate distinctly different hemodynamic effects (37, 38). The primary venous effect is venodilatation of both capacitance and resistive elements of the venous circuit. Rv falls and the slope of the VR relationship becomes steeper (Fig. 8, point A to B), which tends to drive up VR. However, this effect is partially offset by a decrease in the proportion of Vs to Vo, which reduces P_{ms} (Fig. 8, point B to C). The combination of arteriolar vasodilator activity and direct myocardial inotropic effect results in a marked increase in effective contractility and a shift of the ventricular function relationship upward (Fig. 8, point C to D). The effect is a substantial increase in VR/CO with a concomitant decrease in P_{RA} and related filling pressures.

Vasopressors with inotropic activity such as dopamine and norepinephrine have effects that are intermediate between pure vasopressors and inodilators. α-1 adrenergic agonist activity generates significant vasoconstriction resulting in a shallower VR response curve (Fig. 9, point A to B), but the capacitance beds are also constricted resulting in a shift of venous volume toward Vs, which shifts P_{ms} to the right (Fig. 9, point B to C). Because direct myocardial inotropic effects are partially offset by arteriolar vasconstrictor effects (which increases ventricular afterload), the right ventricular cardiac function curve is not as markedly shifted as seen with the inodilator group (Fig. 9, point C to D). The net effect of a vasopressor with inotropic activity is generally to increase VR/CO, although not to the extent seen with inodilators. In addition, P_{RA} and related filling pressures are typically unchanged or modestly increased (at small to moderate drug doses).

CONCLUSIONS

The traditional teaching of cardiac physiology has focused almost exclusively on the left side of the heart. This is a consequence of the fact that much of the burden of cardiovascular diseases in advanced nations is represented by ischemic heart disease and LV failure that are well described using the most broadly accepted standard determinants of cardiovascular performance of heart rate, preload, afterload, and contractility. However, this focus ignores the critical role of the right heart...
and venous system in regulating VR in states of hemodynamic compromise and shock. An approach that integrates right heart performance and VR provides a model that will be intuitively attractive to most intensivists.

In the second part of this article, we discuss the application of VR curves in the understanding and treatment of different shock states commonly encountered in critical care.

REFERENCES

Role of the Venous Return in Critical Illness and Shock: Part II—Shock and Mechanical Ventilation

Duane J. Funk, MD1,2; Eric Jacobsohn, MD1,2; Anand Kumar, MD1,3

Objective: To provide a conceptual and clinical review of the physiology of the venous system as it is related to cardiac function in health and disease.

Data: An integration of venous and cardiac physiology under normal conditions, critical illness, and resuscitation.

Summary: The usual clinical teaching of cardiac physiology focuses on left ventricular pathophysiology and pathology. Due to the wide array of shock states dealt with by intensivists, an integrated approach that takes into account the function of the venous system and its interaction with the right heart may be more useful. In part II of this two-part review, we describe the physiology of venous return and its interaction with the right heart function as it relates to mechanical ventilation and various shock states including hypovolemic, cardiogenic, obstructive, and septic shock. In particular, we demonstrate how these shock states perturb venous return/right heart interactions. We also show how compensatory mechanisms and therapeutic interventions can tend to return venous return and cardiac output to appropriate values.

Conclusion: An improved understanding of the role of the venous system in pathophysiologic conditions will allow intensivists to better appreciate the complex circulatory physiology of shock and related therapies. This should enable improved hemodynamic management of this disorder. (Crit Care Med 2013; 41:573–579)

Key Words: cardiogenic shock; cardiovascular physiology; hemodynamics; hemorrhagic shock; obstructive shock; septic shock

Many, if not most, clinicians approach the management of acute cardiovascular dysfunction and shock using an analysis that emphasizes left ventricular physiology, probably as a consequence of medical training that emphasizes the role of left ventricular dysfunction in ischemic heart disease, the most common cause of death in the developed world. Intensivists deal with a broader array of cardiovascular perturbations including shock states in which vascular dysfunction and other extracardiac perturbations may dominate the clinical picture (e.g., septic, hypovolemic, or obstructive shock). In the first part of this two-part review, we reviewed an approach to cardiovascular physiology that incorporates both cardiac and vascular elements that may be more useful to intensivists than one that focuses exclusively on left ventricular physiology. In the second part of this review, we describe various shock states and how the knowledge of venous return (VR) and cardiac output (CO) curves help to diagnose and treat the common hemodynamic problems encountered in critical care. The key concepts described here are covered in detail in the first part of the review. The reader is encouraged to read that earlier physiologic review before proceeding with this current pathophysiologic review.

To review, only a portion of the total blood volume \(V_t \) contributes to the pressures generated in the circulation (1–6). The unstressed intravascular volume \(V_u \) can be defined as that volume required to fill the circulatory system to capacity without any increase in cardiovascular transmural pressure. Stressed volume \(V_s \) would be that amount which, when added to the unstressed volume, generates the cardiovascular transmural pressure. Passive exsanguination of an anticoagulated experimental animal would result in a large blood loss. The external, exsanguinated volume would represent the \(V_s \). The amount remaining in the circulation would be \(V_u \).

The mean systemic pressure \(P_{ms} \) is the average pressure throughout the entire circulatory system (cardiac/arterial/capillary/venous). It is most easily measured when pressures are equilibrated during brief cardiac standstill (2, 7). During active circulation, the portion of the cardiovascular circuit that has a pressure equivalent to \(P_{ms} \) is found in the small veins/venules in the splanchnic bed. \(P_{ms} \) can therefore be considered the upstream pressure driving VR (VR = \(P_{ms} - P_{ra}/R_v \), where \(P_{ra} \) is right atrial pressure and \(R_v \) is venous resistance). Another salient point is that the \(R_v \) is represented by the inverse of the slope of the VR curve in the graphics attached to this article.
VR AND CO IN PATHOPHYSIOLOGIC STATES

Hypovolemia

The changes in cardiac function and VR curves during hypovolemia and hypovolemic shock are shown in Figure 1. The normal circulatory state is represented by point A on the graph where the cardiac function (describing CO over a range of right atrial pressures) and VR curves (describing VR over the same right atrial pressure range) intersect. With the acute onset of hypovolemia, total volume (V_t) and stressed volume decrease, mean systemic pressure (P_{ms}) decreases, and the VR curve is shifted to the left (8). Consequently, it intersects the CO curve at a lower point and the net result is a decrease in VR/CO (point A to B). Note that this shift from point A to B does not take into account a sympathetic/endogenous catecholamine-driven compensatory increase in cardiac contractility (i.e., the slope of the ventricular function curve remains unchanged) or venous resistance (i.e., the slope of the VR curve remains constant).

A variety of compensatory responses that maintain CO/VR must then be considered. First, P_{ms} is supported through several mechanisms. Endogenous catecholamines from both sympathetic nerves and the adrenal medulla cause an early constriction of venous capacitance vessels with a resultant shift of intravascular volume from unstressed volume (V_u) to stressed volume V_s (6). In addition, a slow shift of interstitial fluid into the vascular compartment occurs. As a consequence of an increase in precapillary resistance and a decrease in postcapillary resistance with an enhanced production of plasma oncotic proteins under physiologic stress, a transfer of fluids from the interstitial to the intravascular compartment occurs (9). This results in a partial correction of V_u and V_s. Although both processes begin immediately, clinically significant volume transfers (on the order of hundreds of milliliters of fluid) take 6 to 12 hrs and peak responses (> 0.5 L) occur within about 3 days depending on the blood volume loss (10, 11). If the hypovolemia remains uncorrected, these compensatory changes would result in the shift of V_u, V_t, P_{ms}, and the VR curve back toward normal over hours and days (shown in Fig. 1 as the shift from point B back to point C). The second compensatory mechanism that occurs in hypovolemia is the secretion of endogenous catecholamines. This results in an early upward and leftward shift of the ventricular function curve (shown in Fig. 1 as the change from point C to D). This allows for maintenance of near-normal CO with moderate degrees (< 15% total volume) of blood loss.

The obvious treatment of hypovolemia is the restoration of adequate P_{ms} by the administration of intravenous fluids, initially in the form of crystalloid. In Figure 1, this can be represented by the same shift on the curve from point B to C (which also represents the response to compensatory fluid shifts mentioned previously). Because V_u and V_t are increased, P_{ms} is partially restored, and the resultant CO/VR can be higher than baseline (Fig. 1, point C to D) due to the endogenous catecholamine-induced increase in cardiac contractility. This therapy also has the immediate effect of decreasing R_t due to an improvement in red blood cell rheology/fluid viscosity with hemodilution (because hemoglobin level is the primary determinant of blood viscosity). Later, R_t may also be decreased as a consequence of vasodilatation due to circulating mediators and NO (12–14). These effects can cause a shift of the restored VR curve to a steeper slope and an increase in CO/VR (Fig. 1, point D to E). The steeper ventricular function curve associated with catecholamine stimulation and the decrease in resistance to VR (R_t) with hemodilution explain why CO/VR can be increased above the baseline with small or moderate (typically < 15% total blood volume) degrees of hemorrhage treated with fluid resuscitation.

As noted previously, the transfer of blood from V_u to V_t in moderate hypovolemia can result in the maintenance of near-normal CO and mean arterial pressure (MAP). The reserve of the patient, however, is substantially decreased, and further significant losses of intravascular volume may result in a substantial decrease in VR/CO and MAP. This is clearly demonstrated when trauma patients are anesthetized. In addition to their adverse effects on myocardial contractility, almost all the anesthetic induction agents cause a significant increase in venous capacitance (i.e., a decrease in the proportion of V_u to V_t in relation to a fixed V_t). In hypovolemic patients, this can lead to profound depression of VR/CO and MAP with a high risk of death.

Often, clinicians treating a hypovolemic, hypotensive patient will administer vasopressors to maintain normal blood pressure while there is ongoing fluid resuscitation. Depending on the choice of vasopressor, this may actually have a detrimental effect on CO. The administration of a pure α-agonist such as phenylephrine will generate a shallower slope of the VR curve, and result in a decrease in CO, but with maintenance of near-normal blood pressure. This may be useful for brief periods to
Cardiogenic Shock
There are a variety of etiologies that can cause cardiac failure and cardiogenic shock. Most, including increased afterload, depression of myocardial contractility (ischemia, infarction, and others), arrhythmias, and mechanical valve failure affect VR in similar ways in that they increase P_{ra}. This decreases the driving pressure gradient ($P_{ms} - P_{ra}$) for venous flow and reduces VR, which directly limits CO.

As seen in Figure 2, cardiac failure and cardiogenic shock shift the cardiac function curve downward and to the right (flatter curve) due to decreased contractility. The resulting intersection with the VR curve occurs at a lower than normal CO (Fig. 2 point A to B). Note that at point B, P_{ms} (the intercept of the VR curve with the abscissa) is unchanged and although P_{ra} is substantially higher than normal, VR/CO is markedly lower. In Figure 2, P_{ra} is the line drawn perpendicular from point B to the abscissa of the graph. This is in contrast to the effect of fluid loading which increases P_{ms}, VR/CO, and P_{ra}. As noted earlier, the higher P_{ra} reduces the gradient for blood flow to the right atrium. Thus, despite a higher P_{ra} and measured central venous pressure in this condition, VR/CO is reduced.

The compensatory release of endogenous catecholamines causes an increase in V_r, relative to V_e with a resulting increase in P_{ms} (6). Administration of fluid also increases P_{ms} by increasing V_r and V_e without a change in V_c. Both generate a similar rightward shift of the VR curve (viscosity effects are ignored). However, because a large degree of myocardial dysfunction results in a ventricular function curve that is substantially flattened, the beneficial impact of any increase in P_{ms} from fluid administration or sympathetic activation will be modest (Fig. 2, point B to C). Further fluid administration would not substantially increase CO, but would only increase pulmonary venous pressure and lead to the formation of pulmonary edema. If cardiac contractility is less severely depressed (with a better maintained and steeper cardiac response curve), the initial decrease in CO/VR will be less and the effect of modest fluid administration may be sufficient to restore it to a normal range.

The use of inotropic agents is a standard therapy of cardiac failure and cardiogenic shock of almost any etiology. The most common agents used are dobutamine, a synthetic catecholamine, and milrinone, a phosphodiesterase inhibitor. Both have similar effects on the cardiovascular system, generating a moderate increase in cardiac contractility with a mild-to-moderate degree of arteriolar and venous vasodilatation (dependent on a lower range dose in the case of dobutamine [15–18]). Both effects are beneficial in cardiac failure. The increase in cardiac contractility and decrease in pulmonary vascular afterload generate a steeper Starling cardiac function curve. Used alone without concomitant fluids, a partial correction of a depressed Starling curve will yield a significantly improved VR/CO (Fig. 2, point B to D). However, assuming that V_r and P_{ms} are maintained or augmented with modest fluid support, the intersection of the curves moves CO/VR upward toward normal even if contractility remains somewhat depressed (i.e., the ventricular response curve remains shifted downward compared with normal) (Fig. 2, point D to E). In addition, the venous vasodilatory effect of both drugs will result in a decrease in R_v (i.e., a steeper VR slope, not shown in Fig. 2), which will further augment CO/VR again, assuming that V_r and P_{ms} are maintained with fluids as the natural effect of a vasodilator will be to decrease the proportion of V_r to V_e and decrease P_{ms}.

If cardiac injury is sufficiently severe, combined systolic and diastolic dysfunction shifts the ventricular response curve markedly downward (flatter) and to the right. This manifests as a substantial increase in P_{ra} that causes a narrowing of the P_{ms} to P_{ra} gradient. Because this gradient drives VR, decreased VR/CO will manifest and, if sufficiently severe, cardiogenic shock may result. In that circumstance, dopamine or norepinephrine, inotropic agents with robust inotropic and vasoconstrictive actions, are often required. These drugs, in contrast to milrinone and dobutamine, will tend to increase V_r as a portion of V_e. The net effect is to generate a more modest inotropic effect than dobutamine or milrinone while maintaining the robust vasopressor effects required in hypotensive shock patients (19).

Although ischemic cardiac injury is dominantly left-sided, such injury (from a myocardial infarction for example) will often also cause right ventricular dysfunction. In addition to the fact that there is often an element of direct RV injury with LV infarcts, all causes of left ventricular dysfunction result in increases in pulmonary artery pressures and RV afterload. This represents an impediment to right ventricular systolic ejection and results in a flattening of the right heart Frank-Starling relationship.

In addition, the increased P_{ra} associated with RV dysfunction results in a narrowing of the VR gradient ($P_{ms} - P_{ra}$) and a decrease of VR/CO. As noted previously, in terms of venous physiology, this increase in P_{ra} is the only mechanism through which cardiac dysfunction can reduce VR.

![Figure 2](image-url)
Distributive Shock

Distributive shock is a generic term for a pathophysiologic state that combines hypotension with significant arteriolar and venous dilation. Altered distribution of blood volume and blood flow is also characteristic. Septic shock is the prototypical disease that causes distributive shock, although the other conditions found in critically ill patients may exhibit similar hemodynamic aberrations (systemic inflammatory response, anaphylactic/anaphylactoid responses, vasodilating drugs, liver failure, adrenal insufficiency, anaphylaxis, thiamine deficiency, carcinoid syndrome, etc.).

Activation of the inflammatory cascade as a result of severe infection leads to the release of endogenous mediators such as cytokines (tumor necrosis factor-α, interleukin-1β, etc.), eicosanoids (prostacyclins, prostaglandins, leukotrienes), and others (20, 21). Many of these factors drive up regulation of inducible nitric oxide synthase (NOS) producing nitric oxide, which is thought to be the end mediator of vascular smooth muscle relaxation throughout the cardiovascular system (22–26). The result is a reduction of R_v and P_{ms}. In addition, cytokine-mediated NOS activity may have a substantial role in the variable degrees of myocardial depression that is typically seen in sepsis and septic shock (27, 28). A graphical representation of septic shock is depicted in Figure 3.

Early in the course of septic shock, P_{ms} decreases. One of the primary reasons is a shift of stressed volume (V_s) to unstressed volume (V_u) as a consequence of increased venous capacitance resulting from active dilation of small venules/veins. This increase in unstressed volume (V_u) and decrease in stressed volume (V_s) have been confirmed in experimental animal models of canine and porcine endotoxemia (29–31). Furthermore, total circulating volume (V_t) and stressed volume (V_s) may both be decreased due to loss of fluids to the interstitium, increased insensible losses, and decreased oral intake. As a consequence of the decreased P_{ms} in early, unresuscitated septic shock, VR, and CO are often reduced (Fig. 3, point A to B). Septic shock is also associated with dilatation of large veins and shunting of arterial blood flow to low resistance (fast time constant) vascular beds (as described in part I of this review), both of which decrease R_v and augment VR (31, 32). Hemoconcentration due to increased fluid loss to the interstitium, increased insensible losses, and decreased fluid intake may generate increased blood viscosity, attenuate the decrease in R_v and limit augmentation of VR (30). Overall, despite hemoconcentration, R_v decreases and the slope of the VR curve becomes steeper (Fig. 3, point B to C). However, the decreased R_v typically does not fully compensate for the decreased P_{ms} in unresuscitated septic shock, and hence CO usually remains depressed. At this unresuscitated stage of septic shock, the physical examination frequently is suggestive of a hypodynamic, low CO condition. The patient will often be cold and clammy with a narrowed pulse pressure (hypodynamic shock). Central and mixed venous oxygen saturations are often low at this stage (33–35).

Subsequently, fluid resuscitation in septic shock generates a marked augmentation in V_u. Although 5 to 10 L of crystalloid over 24 hrs is often provided in clinical practice (36, 37), a significantly smaller volume on the order of 0.5 to 2 L is probably sufficient to sufficiently augment V_t (35, 38). Fluid resuscitation results in a correction of V_s and P_{ms} back to normal (or potentially higher), allowing the decreased R_v (with steeper VR curve) to be manifested by increased VR/CO (Fig. 3, point C to D) that can be more than double normal (31). The hyperdynamic circulation may be further accentuated by a further decrease in R_v related to hemodilution and decreased blood viscosity (not shown in figure). This classical hyperdynamic (high CO/low SVR) hemodynamic picture of established septic shock typically does not manifest without fluid resuscitation (39–42). However, even a modest degree of fluid resuscitation may be sufficient to allow the permissive effects of the decreased R_v to be expressed as increased CO.

Based on echocardiography and radionuclide ventriculography, the majority of patients with septic shock also develop a degree of biventricular myocardial depression as manifested by a decreased ejection fraction (with biventricular dilatation (43–45)). However, the decreased R_v in the context of restored V_u due to fluid resuscitation normally overshadows the depressed contractility so that patients remain substantially hyperdynamic with increased VR/CO. These effects are illustrated in Figure 3 (point D to E). In a small subset of patients, myocardial depression is sufficiently severe that VR/CO remains decreased even after resuscitation (Fig. 3, point F). In this situation, an emphasis on inotropic support rather than the more typical vasopressor approach to therapy may be required.

Obstructive Shock

There are several pathophysiologic phenomena that cause obstructive shock. Conditions such as tension pneumothorax,
pericardial tamponade, or compression of the inferior vena cava secondary to abdominal compartment syndrome or pregnancy can all cause a decrease in CO due to obstructive shock. Large pulmonary emboli can also cause a form of obstructive shock that acts very similarly to cardiogenic shock. Given its interesting and complex pathophysiology, tension pneumothorax will be examined as an example of obstructive shock.

Tension pneumothorax causes a reduction in the VR because of an increase in intrathoracic pressure. As we can see in Figure 4, several changes occur in the VR and cardiac function curves with the development of a tension pneumothorax.

The primary pathophysiologic event in the development of obstructive shock due to tension pneumothorax is that an increasingly positive pleural pressure (P_{pl}) and not P_{ra} becomes the limiting factor of blood flow to the right heart (46, 47). When P_{pl} exceeds P_{ra}, the numerator of the VR equation ($VR = P_{ra} - P_{pl}/(R_t)$) becomes $P_{ra} - P_{pl}$; VR no longer increases with a decrease in P_{ra}. Normally, VR plateaus as P_{ra} approaches P_{atm}. With tension pneumothorax, the limitation of VR occurs at P_{pl} (i.e., a value greater than P_{atm} where $P_{ra} = 0$). Assuming that P_{ra} and R_t are unchanged, this results in a VR curve where the inflection of the plateau point is shifted downward and to the right (with a down-shifted plateau) but where the slope ($1/R_t$) and the x-axis intercept (P_{atm}) are unchanged. In the absence of other effects, a physiologic impossibility would result; the intercept of the cardiac function curve and the VR curve (defining VR/CO) would shift to the plateau portion of the VR curve with only a modest depression of VR/CO (Fig. 4, point A to A1). This is not possible because there can be no ventricular volume when intrathoracic pressure (reflected by P_{pl}) exceeds intraventricular pressure (reflected by P_{ra}) as occurs at this theoretical point.

However, as part of the response to increased P_{pl}, the cardiac function curve is shifted rightward on the graph. This rightward shift occurs as a consequence of the fact that the presence of an increased pleural pressure adversely impacts effective cardiac compliance. Diastolic ventricular distension (preload) and the Starling response are dependent on the cardiac transmural pressure gradient. When P_{pl} increases with a tension pneumothorax, the transmural pressure gradient narrows and ventricular filling is impaired. Ventricular filling can be maintained but at a significantly higher filling pressure (P_{ra}). This effect shifts the ventricular function curve to the right. In this situation, VR/CO will transition from point A to B (rather than A1) as shown in Figure 4.

Several other hemodynamic pathophysiologic events occur. The increase in P_{pl} causes compression of the large veins in the thorax increasing R_t. The result is a shallower slope in the VR curve, which further depresses VR/CO (Fig. 4, point B to C). In addition to the rightward shift of the cardiac function curve, the curve is flattened as a consequence of a substantial increase in RV afterload secondary to lung collapse and acute hypoxemia (which increases pulmonary vascular resistance) induced by the pneumothorax (47). This further reduces VR/CO (Fig. 4, point C to D).

There are significant compensatory responses that are not shown graphically in the interests of simplicity. Endogenous catecholamine release results in a shift of V_t to V_i without an alteration in V_s resulting in an increase in P_{ms}. This effect may be partially offset by vasoconstriction of large veins and the vena cava resulting in a higher R_t and a shallower VR curve. In addition, this stress-associated sympathetic catecholamine surge will tend to increase contractility resulting in a steeper Starling response curve although it will not offset the increase in right ventricular afterload.

Temporizing therapies may prove useful depending on the degree of hemodynamic compromise. The first therapy applied is often intravascular expansion with resuscitative fluids, which increases V_t, V_i, and P_{ms} shifting the VR curve to the right so that it intercepts the cardiac contractility curve at a somewhat higher CO/VR (Fig. 4, point D to E). This may be effective if the pneumothorax is associated with only a modest increase in P_{pl}. However, the administration of large amounts of fluid will result in a negligible increase in VR/CO despite substantial increases in P_{ms} if the cardiac function curve is markedly flattened by the increased right ventricular afterload. If fluid administration results in an insufficient response, an inotropic agent is often initiated. The combination of fluids and inotropic support may be more effective than either therapy alone (Fig. 4 point E to F). However, despite such aggressive cardiovascular support, CO/VR rarely achieves normal values except in the early stages of hemodynamic compromise. In addition, fluid therapy is limited by the increase in capillary filtration that will occur with the increase in hydrostatic pressure from administering excessive volume. Further in the pathophysiologic progression of this condition, supportive modalities are unable to shift the curves sufficiently and only decompression will be effective.

If the hypotension that is often seen with a tension pneumothorax is treated with a pure vasopressor (such as phenylephrine), the result will be a further decrease in CO/VR because of the increase in R_t and, potentially, increase in pulmonary afterload.

When pericardial tamponade is the cause of obstructive shock, the same physiologic principles as in tension pneumo-
thorax apply. The difference being that the impedance to VR is now pericardial pressure \((P_{pm})\) as opposed to \(P_{vt}\), and the numerator for the VR equation becomes \(P_{pm} - P_{vt}\). As with tension pneumothorax, the initial use of fluids and inotropes will have modest effects on improving CO but with pathophysiologic progression, only decompression of the tamponade will be effective.

Effect of Positive Pressure Ventilation on VR and Cardiac Function

The effects of mechanical ventilation on cardiac function and VR are similar in nature to tension pneumothorax, but generally less in magnitude. As seen in Figure 5, institution of positive pressure mechanical ventilation causes analogous changes (when compared with tension pneumothorax) in the VR and cardiac function curves that can, on occasion (and depending on cardiac function and volume status), result in hypotension. Upon switching from negative pressure ventilation to positive pressure ventilation, \(R_A\) increases (a shallower slope of the VR curve) because of the compression of the intrathoracic veins and vena cava. The result is the shift from point A to B in Figure 5. In addition, mean positive intrathoracic pressure caused by mechanical ventilation results in a rightward shift of the right heart ventricular function curve as a consequence of decreased effective cardiac compliance. The curve is also somewhat depressed/flattened due to the increased right ventricular afterload due to increases in pulmonary vascular resistance caused by the positive intrathoracic pressure (Fig. 5, point B to C).

Although endogenous catecholamine release will reverse some of these changes, the standard therapy of fluid infusion is often needed to return CO/VR to normal range (Fig. 5, point C to D). However, CO/VR compromise may be especially profound if the patient is already volume depleted with a low \(P_{pm}\) (Fig. 5, point C to E) or if intrathoracic pressure is markedly increased (high levels of positive end-expiratory pressure [PEEP] or auto PEEP in association with chronic obstructive pulmonary disease/asthma) which results in both an increase in \(R_A\) (not shown) and more profound shift and depression of the cardiac function curve (Fig. 5, point C to F). Interestingly, in drawing a line perpendicular from point C to the abscissa/x-axis of the VR graph (the intersection representing \(P_{ra}\)) and a similar line from point A to the abscissa, it is apparent that under positive pressure ventilation \(P_{ra}\) actually increases despite a decrease in CO/VR. This is part of the reason why static predictors of preload such as \(P_{ra}\) are inadequate in predicting CO and volume responsiveness in mechanically ventilated patients (48–53).

CONCLUSIONS

The understanding of circulatory physiology is paramount to the treatment of the critically ill. The traditional approach has been to focus on the left heart and the factors that govern left heart CO. As the reader has seen, there are many forms of shock that involve alterations in the vasculature or other extracardiac perturbations. It is in these cases that the concept of VR plays an important role in the understanding and treatment of these complex patients.

The initial description of the role of the vasculature in regulating CO over 115 yr ago by Bayliss and Starling and further delineated by Guyton in the 1950s still has clinical relevance today when managing patients with complex pathophysiology.

REFERENCES

49. Luecke T, Pelosi P, Quintel M: [Haemodynamic effects of mechanical ventilation]. *Anaesthesist* 2007; 56:1242–1251

