Title:

Journal Issue:
Western Journal of Emergency Medicine, 15(1)

Author:
Wira, Charles R, Yale School of Medicine
Dodge, Kelly, Yale Department of Emergency Medicine
Sather, John, Yale Department of Emergency Medicine and Surgical Critical Care
Dziura, James, Yale Department of Emergency Medicine

Publication Date:
2014

Publication Info:
Western Journal of Emergency Medicine

Permalink:
http://escholarship.org/uc/item/4fg0w0jt

Author Bio:
MD
MD
MPH, PhD

Keywords:
sepsis, goal directed therapy, Emergency Medicine

Local Identifier:
uciem_westjem_6828

Abstract:
Objective: To perform a meta-analysis identifying studies instituting protocolized hemodynamic optimization in the Emergency Department for patients with severe sepsis and septic shock.

Methods: The structure of this analysis was modeled after the QUORUM and MOOSE published recommendations for scientific reviews. A computer search to identify articles was performed.
from 1980 to present. Studies included for analysis were adult controlled trials implementing protocolized hemodynamic optimization in the ED for patients with severe sepsis and septic shock. Primary outcome data was extracted and analyzed by two reviewers with the primary endpoint being short-term mortality reported either as 28-day or in-hospital mortality.

Results: 1323 articles were identified with 65 retrieved for review. After application of inclusion and exclusion criteria 25 studies (15 manuscripts, 10 abstracts) were included for analysis (n=9597). The mortality rate for patients receiving protocolized hemodynamic optimization (n=6031) was 25.8% contrasted to 41.6% in control groups (n=3566, p<0.0001).

Conclusions: Protocolized hemodynamic optimization in the ED for patients with severe sepsis and septic shock appears to reduce mortality.

Supporting material:
figure 1
Cover letter

Copyright Information:
Copyright 2014 by the article author(s). This work is made available under the terms of the Creative Commons Attribution-NonCommercial4.0 license, http://creativecommons.org/licenses/by-nc/4.0/
Meta-analysis of Protocolized Goal-Directed Hemodynamic Optimization for the Management of Severe Sepsis and Septic Shock in the Emergency Department

Charles R. Wira, MD*
Kelly Dodge, MD*
John Sather, MD†
James Dziura, MD, PhD*

* Yale University, Department of Emergency Medicine, New Haven, Connecticut
† Yale University, Department of Emergency Medicine and Surgical Critical Care, New Haven, Connecticut

Supervising Section Editor: Sukhjit Takhar, MD
Submission history: Submitted June 13, 2011; Revision received February 14, 2012; Accepted July 7, 2013
Electronically Published [date]
Full text available through open access at http://escholarship.org/uc/uciem_westjem
DOI: 10.5811/westjem.2013.7.6828

Introduction: To perform a meta-analysis identifying studies instituting protocolized hemodynamic optimization in the emergency department (ED) for patients with severe sepsis and septic shock.

Methods: We modeled the structure of this analysis after the QUORUM and MOOSE published recommendations for scientific reviews. A computer search to identify articles was performed from 1980 to present. Studies included for analysis were adult controlled trials implementing protocolized hemodynamic optimization in the ED for patients with severe sepsis and septic shock. Primary outcome data was extracted and analyzed by 2 reviewers with the primary endpoint being short-term mortality reported either as 28-day or in-hospital mortality.

Results: We identified 1,323 articles with 65 retrieved for review. After application of inclusion and exclusion criteria 25 studies (15 manuscripts, 10 abstracts) were included for analysis (n=9597). The mortality rate for patients receiving protocolized hemodynamic optimization (n=6031) was 25.8% contrasted to 41.6% in control groups (n=3566, p<0.0001).

Conclusion: Protocolized hemodynamic optimization in the ED for patients with severe sepsis and septic shock appears to reduce mortality. [West J Emerg Med. year;00(0):000–000.]

INTRODUCTION

The incidence of sepsis and the absolute number of sepsis-related deaths have progressively increased in the United States over the last decade, and an increasing number of critically ill patients are managed in the emergency department (ED). An estimated 571,000 cases of severe sepsis, or roughly two-thirds of the nation’s burden, present annually to an ED and spend nearly 5 hours therein. Given the significant mortality associated with this patient population, an important determinant of outcome is conceivably the care provided in the ED prior to intensive care unit (ICU) admission. If so, a grave responsibility rests upon ED systems to create and provide evidence-based management strategies targeting severe sepsis and septic shock.

Previous studies have examined the effect of therapeutic interventions on outcome in septic shock, such as immunotherapeutic agents, hemodynamic optimization, or pulmonary artery catheterization but have enrolled patients up to 72 hours after ICU admission. The lack of efficacy noted in hemodynamic optimization trials, in particular, prompted editorials emphasizing that future studies target patients early in their presentation and begin intervention at a more reversible stage of organ dysfunction.

Rivers et al examined whether early goal-directed therapy (EGDT) in the ED before ICU admission effectively reduces...
multi-organ dysfunction and mortality rates in patients with septic shock by using specific criteria for early identification, establishing goals of resuscitation, and implementing a treatment protocol. Since publication there have been other trials evaluating the impact of ED management on patients with severe sepsis and septic shock. This systematic review provides an analysis of studies instituting protocolized hemodynamic optimization for patients with severe sepsis and septic shock in the ED to determine if there is a significant reduction in mortality.

METHODS

We modeled the structure of this analysis after the QUORUM and MOOSE published recommendations for systematic scientific reviews. A computer search to identify articles was performed by 2 investigators (KD, CW) from 1980 to December 4, 2011 using the following databases: MEDLINE, EMBASE, and CINAHL, Cochrane DSR, DARE, CCTR, and ACP Journal Club. Medical subject headings (MeSH) used were as follows: early goal-directed therapy, goal-directed therapy, goal-oriented therapy, hemodynamic optimization, sepsis bundles, supranormal oxygen delivery, sepsis oxygen delivery, resuscitation endpoints, cardiac optimization, supranormal resuscitation, mixed venous saturation, mixed central venous oxygen saturation, sepsis quality improvement, and sepsis protocol. We screened references in reviews and relevant trials to identify further pertinent articles. We performed an Internet search with the Google search-engine to identify unpublished abstracts at national and international emergency medicine and critical care conferences. And we contacted a clinical expert in the field for further assistance (JS).

Studies included for analysis were adult controlled trials implementing protocolized hemodynamic optimization in the ED for patients with severe sepsis and septic shock. Exclusion criteria were studies published prior to 1980, non-English articles, studies not reporting the outcome of short-term mortality, studies not enrolling any patients from the ED, studies excluding septic patients, preliminary studies with later manuscripts reporting the same data, and series with fewer than 10 patients. Of note, we included studies if a portion of patients were enrolled from the ED, with the remainder being enrolled from hospital floors or intensive care units. Studies were also included if the treatment protocol administered the following additional treatment interventions: activated protein C, tight glycemic control, low tidal volume ventilation, or corticosteroid administration. To reduce publication bias, we also performed a systematic search for published abstracts that had not been published in manuscript format, even though critical appraisal of such publications is limited. Our methodology was to review all published abstracts related to “sepsis” or “goal-directed therapy” in national emergency medicine (SAEM, ACEP) and critical care (SCCM, ACCP) conferences from 2001 to 2008/2010 (we searched EM national conferences through 2010, and national critical care conferences through 2008). We also included published abstracts identified as references in relevant review papers. Abstracts explicitly stating that the location of the protocolized hemodynamic optimization intervention was performed only in the ICU and not in the ED were excluded, while all others were included for analysis.

Two reviewers (CW, KD) independently applied inclusion/exclusion criteria and used a customized data-collection form and glossary of terms to systematically identify relevant trials and outcome measures. On the data collection form each recorded the primary outcome measure of short-term mortality, secondary outcome measures, and applied a level of evidence score to each study. Secondary outcome measures included: research protocol, administration of other treatments, severity of illness scores, serum lactate levels, Scv02, and hospital length of stay. Disagreements were solved by discussion. We scored articles with a methodologic quality assessment derived from prior literature. Level 1 studies were randomized, controlled trials with all of the following criteria being fulfilled: concealed treatment allocation, similar groups at baseline, blinding to the intervention, acceptable drop-out rate, similar timing of the outcome assessment in all groups, and incorporation of an intention to treat analysis. Level 2 studies were randomized, controlled trials without >1 of the listed level 1 criteria. Level 3 studies were prospective un-randomized trials (prospective observational studies, including before/after analyses). Level 4 studies were not fully prospective, including but not limited to use of a historical or retrospective control group. Level 5 studies were published abstracts or short reports.

We used Fisher's exact test and a two tailed p-value to determine statistical significance for the primary endpoint of short-term mortality. A p-value of <0.05 was considered significant. We performed meta-analysis using Comprehensive Meta-Analysis version 2.0. Odds ratios were used as effect size estimates and presented for each study along with 95% confidence intervals. Pooled estimates are presented within publication type and across all studies. The estimate of heterogeneity was moderate (i-squared=35) and was not explained by publication type, so random effect estimates are described. The random effect model assumes that the true effect size can vary from study to study and the pooled effect size is the average.

RESULTS

Database searches identified 1,323 articles (Figure 1). After combination of MeSH headings and removal of duplicates (n=614), we identified 709 articles. Six hundred forty-four articles met exclusion criteria on electronic review yielding 65 articles that were manually evaluated for clinical relevance. We identified 15 controlled studies fulfilling inclusion and exclusion criteria (n=3277). There was 93.3% agreement between investigators for article level-of-evidence.
References Identified (n=1323)
ECDT: 293
Goal-directed therapy: 502
Goal-oriented therapy: 32
Hemodynamic optimization: 74
Sepsis bundles: 28
Supranormal oxygen delivery: 38
Sepsis oxygen delivery: 3
Resuscitation endpoints: 28
Cardiac optimization: 3
Supranormal resuscitation: 3
Mixed venous saturation: 261
Mixed central venous oxygen saturation: 0
Sepsis quality improvement: 23
Sepsis protocol: 35

Figure 1. Flow chart of article extraction.

scoring (Table 1), and 96.6% agreement for primary outcome data extracted from published manuscripts (Table 2). The sample size for all studies ranged from 38 to 511. An abstract search also identified 10 studies34–43 (n=6320) with sample sizes ranging from 50 to 5,080. Cumulatively, among 25 studies and abstracts identified (n=9597) 1 study received a level 1 methodological score, 7 received a level 3 score, 7 received a level 4 score, and 10 received a level 5 score (Table 3). One study was excluded44 because it had data reported in a later study that was included for analysis.25

Among published controlled studies four studies enrolled patients from both the ED (Table 2) and ICU with only one reporting the number of patients enrolled from the ED20 (11%), while another gave a qualitative estimate31 (80%). The remaining studies (n=11) appeared to enroll patients only from the ED. Among studies reporting APACHE II scores13,20–23,25,27,30–33 in
the treatment and control groups, the values were 24.8 ± 6.5 and 24.9 ± 6.9 respectively ($P = 0.97$, paired t-test).

All studies used hemodynamic optimization pathways (Table 2) with a mean arterial pressure (MAP) threshold for vasopressors. All studies but one reported mixed central venous (ScvO2) or mixed venous (SvO2) oxygen saturation monitoring. All but two had transfusion thresholds for red blood cells. In several studies, selected patients in the protocolized hemodynamic optimization group and control group were permitted to receive Activated Protein C, low tidal volume ventilation ventilation, tight glycemic control, and corticosteroids (Table 2). The mortality rate for patients receiving protocolized hemodynamic optimization (n=1795) was 25.7% contrasted to 44.3% in control groups (n=1482, p<0.0001, Fisher's Exact test).

Among the 10 published abstracts identified, the mortality rate for patients receiving protocolized hemodynamic optimization (n=4236) was 25.8% contrasted to 39.7% in control groups (n=2084, p<0.0001, Fisher's Exact Test). Cumulatively, among all identified published studies and published abstracts (n=9597), the overall mortality rate for patients receiving protocolized hemodynamic optimization (n=6031) was 25.8% contrasted to 41.6% in control groups (n=3566, p<0.0001, Fisher's Exact Test). In each identified study there was a lower mortality rate in the protocolized hemodynamic optimization group compared to control groups.

Table 1. Overall mortality for protocolized versus non-protocolized hemodynamic optimization for both published studies and published abstracts.

<table>
<thead>
<tr>
<th>Author</th>
<th>N</th>
<th>N total</th>
<th>N Died</th>
<th>%</th>
<th>N total</th>
<th>N Died</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstracts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaieski, 2005</td>
<td>58</td>
<td>16</td>
<td>4</td>
<td>25</td>
<td>42</td>
<td>20</td>
<td>47.6</td>
</tr>
<tr>
<td>Ikeda, 2006</td>
<td>314</td>
<td>266</td>
<td>50</td>
<td>18.9</td>
<td>48</td>
<td>19</td>
<td>40.1</td>
</tr>
<tr>
<td>Kinsella, 2006</td>
<td>185</td>
<td>103</td>
<td>18</td>
<td>16.7</td>
<td>82</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>Mullon, 2006</td>
<td>196</td>
<td>124</td>
<td>43</td>
<td>34.5</td>
<td>72</td>
<td>29</td>
<td>40.3</td>
</tr>
<tr>
<td>Antro, 2006</td>
<td>64</td>
<td>36</td>
<td>13</td>
<td>36.1</td>
<td>28</td>
<td>18</td>
<td>64.3</td>
</tr>
<tr>
<td>Stenstrom, 2006</td>
<td>50</td>
<td>30</td>
<td>5</td>
<td>16.7</td>
<td>20</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>Armstrong, 2005</td>
<td>131</td>
<td>63</td>
<td>17</td>
<td>27</td>
<td>68</td>
<td>35</td>
<td>51</td>
</tr>
<tr>
<td>Tanios, 2007</td>
<td>96</td>
<td>62</td>
<td>17</td>
<td>27</td>
<td>34</td>
<td>19</td>
<td>55</td>
</tr>
<tr>
<td>Cannon, 2008</td>
<td>5080</td>
<td>3488</td>
<td>916</td>
<td>26.3</td>
<td>1592</td>
<td>624</td>
<td>39.2</td>
</tr>
<tr>
<td>Gunaga, 2008</td>
<td>146</td>
<td>48</td>
<td>11</td>
<td>23</td>
<td>98</td>
<td>37</td>
<td>37.8</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>6320</td>
<td>4236</td>
<td>1094</td>
<td>25.8</td>
<td>2084</td>
<td>828</td>
<td>39.7</td>
</tr>
<tr>
<td>Manuscripts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rivers, 2001</td>
<td>263</td>
<td>130</td>
<td>38</td>
<td>30.5</td>
<td>133</td>
<td>59</td>
<td>46.5</td>
</tr>
<tr>
<td>Gao, 2005</td>
<td>101</td>
<td>52</td>
<td>12</td>
<td>23</td>
<td>49</td>
<td>24</td>
<td>49</td>
</tr>
<tr>
<td>Trzeciak, 2006</td>
<td>38</td>
<td>22</td>
<td>4</td>
<td>18.2</td>
<td>16</td>
<td>7</td>
<td>43.8</td>
</tr>
<tr>
<td>Shapiro, 2006</td>
<td>130</td>
<td>79</td>
<td>16</td>
<td>20.3</td>
<td>51</td>
<td>15</td>
<td>29.4</td>
</tr>
<tr>
<td>Micek, 2006</td>
<td>125</td>
<td>61</td>
<td>19</td>
<td>31.1</td>
<td>64</td>
<td>33</td>
<td>51.6</td>
</tr>
<tr>
<td>Jones, 2007</td>
<td>156</td>
<td>77</td>
<td>14</td>
<td>18</td>
<td>79</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>Nguyen, 2007</td>
<td>330</td>
<td>77</td>
<td>16</td>
<td>20.8</td>
<td>253</td>
<td>100</td>
<td>39.5</td>
</tr>
<tr>
<td>Sebat, 2007</td>
<td>511</td>
<td>426</td>
<td>50</td>
<td>11.8</td>
<td>85</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>El Sohl, 2008</td>
<td>174</td>
<td>87</td>
<td>34</td>
<td>39</td>
<td>87</td>
<td>48</td>
<td>55.1</td>
</tr>
<tr>
<td>Puskarich, 2009</td>
<td>285</td>
<td>206</td>
<td>77</td>
<td>37.3</td>
<td>79</td>
<td>39</td>
<td>49.4</td>
</tr>
<tr>
<td>Crowe, 2009</td>
<td>306</td>
<td>183</td>
<td>63</td>
<td>34.4</td>
<td>123</td>
<td>53</td>
<td>43.1</td>
</tr>
<tr>
<td>MacRedmond, 2010</td>
<td>74</td>
<td>37</td>
<td>10</td>
<td>27</td>
<td>37</td>
<td>19</td>
<td>51.4</td>
</tr>
<tr>
<td>Patel, 2010</td>
<td>112</td>
<td>59</td>
<td>12</td>
<td>20.3</td>
<td>53</td>
<td>32</td>
<td>61.1</td>
</tr>
<tr>
<td>Coba, 2011</td>
<td>498</td>
<td>202</td>
<td>75</td>
<td>37.1</td>
<td>296</td>
<td>140</td>
<td>47.3</td>
</tr>
<tr>
<td>Sivayoham, 2011</td>
<td>174</td>
<td>97</td>
<td>22</td>
<td>22.7</td>
<td>77</td>
<td>33</td>
<td>42.9</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>3277</td>
<td>1795</td>
<td>462</td>
<td>25.7</td>
<td>1482</td>
<td>657</td>
<td>44.3</td>
</tr>
<tr>
<td>Total</td>
<td>9597</td>
<td>6031</td>
<td>1556</td>
<td>25.8</td>
<td>3566</td>
<td>1485</td>
<td>41.6</td>
</tr>
</tbody>
</table>
The cumulative odds ratio for all studies was 0.51 (95% CI 0.47 to 0.56) (Figure 2).

DISCUSSION

This meta-analysis evaluates the impact of protocolized goal-directed hemodynamic optimization on short-term mortality in patients with severe sepsis and septic shock when initiated in the ED. Pooled data from the 25 included studies contain 9,597 subjects and demonstrate a 15.8% overall reduction in mortality. Our results underscore the importance of creating ED systems capable of identifying patients and delivering this care at the time of disease recognition.

A mounting body of evidence highlights the unacceptably high mortality rate among patients with severe sepsis and septic shock and suggests that an early quantitative resuscitation strategy can have a substantial survival benefit. Rivers et al first demonstrated the significant reduction in multi-organ dysfunction and mortality from septic shock that may be achieved with an ED-based protocol emphasizing early recognition and goal-directed therapy.¹³ The Surviving Sepsis campaign, led by an international collaboration of critical care groups, endorsed the implementation of such a management strategy within the first 6 hours following recognition of septic shock and severe sepsis but did not mandate the involvement of the ED.⁴⁵

Significant challenges confront the specialty of emergency medicine as it attempts to translate these research interventions and consensus guidelines to the bedside in the ED.⁴⁶ Indeed, some have suggested that EGDT trials are, in essence, a sepsis quality initiative challenging the existing paradigm of management, moving beyond the science and components of early hemodynamic optimization.²⁵ A pervasive question when considering how to deliver care based on the EGDT model in the ED is not simply whether the impact on outcomes is replicable but whether implementation of the protocol itself is. Of note, several of the trials identified in this systematic review appear to have been quality improvement initiatives in the ED based upon existing recommendations, with 2 of the trials performed in community hospital EDs.²⁶,³¹ However, when considering “feasibility” of translation to the bedside it is important to note we could only quantitatively extract the overall proportion of eligible patients receiving protocolized hemodynamic optimization from the following studies: Sebat et al²⁶ in their community hospital reported 100% sensitivity, Shapiro et al²² missed 10 out of 138 eligible patients thus providing treatment to 92.7% of eligible patients, Patel et al in their community hospital reported that 19 of 78 patients didn’t receive bundled care in their hospital, thus providing treatment to 75.6% of eligible patients, and Sivayoham et al—albeit in a retrospective cross-sectional study—reported that only 55.7% of eligible ED patients received EGDT.³³ Of note, results from the 2 community hospitals appear promising for the translation of protocols in that environment.

Perhaps influential on the results from the cumulative trials, there appears to be an increased awareness regarding severe sepsis and septic shock in the specialty of EM. Of note,

Table 2. Location of study and interventions performed.

<table>
<thead>
<tr>
<th>Manuscript</th>
<th>ED Only</th>
<th>Sv02</th>
<th>Early Abx</th>
<th>Steroids</th>
<th>APC</th>
<th>Glycemic Control</th>
<th>Vent. Prot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivers, 2001</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gao, 2005</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Trzeciak, 2006</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Shapiro, 2006</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Micek, 2006</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Jones, 2007</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nguyen, 2007</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sebat, 2007</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>El Sohl, 2008</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Puskarich, 2009</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Crowe, 2009</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MacRedmond, 2010</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Patel, 2010</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Coba, 2011</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sivayoham, 2011</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

ED. emergency department; **Abx.** antibiotics; **Sv02.** mixed venous or central venous oxygen saturation monitored; **APC.** Drotecogin alfa; **Vent Prot.** ventilation protocol

* a Protocol group received more (P<0.05)
* b Control group received more (P<0.05)
* c Antibiotics administered significantly faster in protocol group (P<0.05)
over the past decade the number of sepsis-related published abstracts have increased at EM national congresses with a 10-fold increase since the publication of the seminal EGDT trial in 2001 (Figure 3). Likewise, many of the identified small studies have attempted to replicate the Rivers study or implement the Surviving Sepsis Campaign guidelines and describe the impact of protocolizing hemodynamic optimization in the ED for patients with severe sepsis and septic shock. Our study systematically reviews this published body of literature in an effort to determine the overall impact of protocolized management when initiated in the ED on outcomes in severe sepsis and septic shock. In reporting the successful implementation of a sepsis protocol in the cited institutions, this meta-analysis offers the most compelling evidence to date that the EGDT model in the ED setting is potentially feasible and may improve patient outcomes. Of note, 2 of the trials were performed in community hospitals, suggesting that translation to that environment is also possible and yielding of better outcomes. Our results suggest the importance of creating systems capable of delivering hemodynamic optimization at the time of disease recognition in the ED.

However, the heterogeneity of the studies included in this meta-analysis with respect to both subject identification and management strategies yield a number of limitations that present challenges for future research and implementation. In developing an ED-based protocol for sepsis management, the identification strategy must clearly define whom to target for the management protocol. Rivers et al included patients with infection, 2 or more SIRS criteria, and shock as defined by a lactate > 4mmol/L or hypotension despite plasma of volume expansion of 20cc/kg. Among published studies it is not possible to determine if patients with severe sepsis (ie—organ failure without lactate elevation or vasopressor dependence) benefit from protocolized hemodynamic optimization in the ED, or whether the outcome improvement was imparted only to those with septic shock. The impact of protocolized hemodynamic optimization in sepsis is not marginalized, but the patient population that EM must target remains to be defined with precision, as do the methods employed to reliably

Table 3. Methodologic scores of identified trials that analyzed adult controlled trials implementing protocolized hemodynamic optimization in the emergency department for patients with severe sepsis and septic shock.

<table>
<thead>
<tr>
<th>Author</th>
<th>Design</th>
<th>LOE Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivers, 2001</td>
<td>Randomized control trial</td>
<td>1</td>
</tr>
<tr>
<td>Gao, 2005</td>
<td>Prospective observational study</td>
<td>3</td>
</tr>
<tr>
<td>Gaieski, 2005</td>
<td>Published abstract</td>
<td>5</td>
</tr>
<tr>
<td>Armstrong, 2005</td>
<td>Published abstract</td>
<td>5</td>
</tr>
<tr>
<td>Trzeciak, 2006</td>
<td>Prospective observational study with historical control</td>
<td>4</td>
</tr>
<tr>
<td>Shapiro, 2006</td>
<td>Prospective observational study with historical control</td>
<td>4</td>
</tr>
<tr>
<td>Ikeda, 2006</td>
<td>Published abstract</td>
<td>5</td>
</tr>
<tr>
<td>Kinsella, 2006</td>
<td>Published abstract</td>
<td>5</td>
</tr>
<tr>
<td>Mullon, 2006</td>
<td>Published abstract</td>
<td>5</td>
</tr>
<tr>
<td>Stenstrom, 2006</td>
<td>Published abstract</td>
<td>5</td>
</tr>
<tr>
<td>Antrio, 2006</td>
<td>Published abstract</td>
<td>5</td>
</tr>
<tr>
<td>Micek, 2006</td>
<td>Prospective before and after study</td>
<td>3</td>
</tr>
<tr>
<td>Jones, 2007</td>
<td>Prospective before and after study</td>
<td>3</td>
</tr>
<tr>
<td>Nguyen, 2007</td>
<td>Prospective observational study</td>
<td>3</td>
</tr>
<tr>
<td>Sebat, 2007</td>
<td>Prospective observational study</td>
<td>3</td>
</tr>
<tr>
<td>Tanios, 2007</td>
<td>Published abstract</td>
<td>5</td>
</tr>
<tr>
<td>El Sohl, 2008</td>
<td>Prospective observational study with historical controls</td>
<td>4</td>
</tr>
<tr>
<td>Cannon, 2008</td>
<td>Published abstract</td>
<td>5</td>
</tr>
<tr>
<td>Gunaga, 2008</td>
<td>Published abstract</td>
<td>5</td>
</tr>
<tr>
<td>Puskarich, 2009</td>
<td>Prospective before and after study</td>
<td>3</td>
</tr>
<tr>
<td>Crowe, 2009</td>
<td>Prospective observational study with historical control</td>
<td>4</td>
</tr>
<tr>
<td>MacRedmond, 2010</td>
<td>Prospective observational study with historical control</td>
<td>4</td>
</tr>
<tr>
<td>Patel, 2010</td>
<td>Prospective observational study with historical control</td>
<td>4</td>
</tr>
<tr>
<td>Coba, 2011</td>
<td>Prospective observational study</td>
<td>3</td>
</tr>
<tr>
<td>Sivayoham, 2011</td>
<td>Retrospective before and after observational study</td>
<td>4</td>
</tr>
</tbody>
</table>
do so. Nevertheless, institution of early antibiotics as many of the protocols cited by identified studies have, is a critical intervention.

Likewise, a marked heterogeneity exists with respect to the elements of the protocolized care delivered in the studies included. All of the studies implemented a form of EGDT, but many included additional interventions such as low tidal volume ventilation, glycemic control, steroid administration, pulmonary artery catheter derived variables and/or the use of drotrecogin alfa outside the timeframe of the ED. It is not possible in these studies to discern which of the protocolized elements conferred the greatest mortality benefit and, as such, must be incorporated in an effective ED-based protocol initiative. Nor is it possible, in the case of studies with historical controls, to determine whether the mortality benefit was solely due to enhanced identification of patients with severe sepsis or shock. Nonetheless, many studies cite they were implementing other interventions consistent with the existing standard of care—which in many cases were also given to the control groups. Also, given that every identified study had an improvement in outcomes, the implementation of ED protocolized hemodynamic optimization appears to have an impact on mortality reduction for patients with severe sepsis and septic shock.

LIMITATIONS

This meta-analysis is limited by publication bias. However, to mitigate this potentially confounding variable we performed a systematic review of published abstracts at select national critical care and EM conferences. Nevertheless, if a study was not accepted as an abstract at a national conference, we did not have a mechanism for identification. Also, 4 of the studies enrolled patients from the floors or ICUs in addition to the ED, with only 2 of the 4 articles quantitatively reporting or estimating the number/proportion of patients enrolled from the ED without giving the exact number—Patel et al stated in general terms that 80% of their patients are identified in the ED, with 20% being identified upon ICU admission. Gao et al only had 11% enrolled from the ED. We have cited in the manuscript which studies only enrolled from the ED contrasted to others permitting ICU or medical/surgical floor enrollment.

Figure 2. Relative risk of individual trials. Error bars indicate 95% confidence intervals. The pooled risk estimates are shown as diamonds.

Figure 3. Number of sepsis abstracts at SAEM and ACEP national conferences since 2001.
Interestingly, in the Coba et al article ED patients had greater compliance with interventions contrasted to the ICU environment. We feel there is some merit to including these “hybrid” studies in our analysis—because many hospitals implementing sepsis protocols do so simultaneously in the ED, floors, and ICUs. Also, another limitation of this systematic review is that only one study was a randomized control trial with the others being either a before-after design, having a historical or retrospective control group, or having a cross-sectional design. Thus, many of these trials were subject to selection bias, length bias, completeness of data collection, and variability in practice patterns.

CONCLUSION

Implementation of protocolized hemodynamic optimization in the ED for patients with severe sepsis and septic shock appears to reduce mortality. The development of ED protocols to identify patients with severe sepsis and septic shock and achieve resuscitative endpoints merits strong consideration given the results from this meta-analysis. However, further confirmatory randomized control trials are necessary to determine which treatment components of a protocolized pathway are most beneficial and which specific patient population warrants these interventions in the ED setting.

Address for Correspondence: Charles Wira, MD. Yale Emergency Medicine, 20 York Street, South Pavilion Suite 218, New Haven, CT 06510. Email: charles.wira@yale.edu.

Conflicts of Interest: By the WestJEM article submission agreement, all authors are required to disclose all affiliations, funding sources and financial or management relationships that could be perceived as potential sources of bias. The authors disclosed none.

REFERENCES

the clinical effectiveness of an emergency department-based early goal-
directed therapy protocol for severe sepsis and septic shock.

system for patients in shock on time to treatment and mortality during 5

older adults after implementation of the sepsis bundle. J Am Geriatr Soc.

2008;56:272–278.

28. Puskarich MA, Marchick MR, Kline JA, et al. One year mortality of

patients treated with an emergency department based early goal
directed therapy protocol for severe sepsis and septic shock: a before

comprehensive management protocol for severe sepsis is associated

with sustained improvements in timeliness of care and survival. Qual Saf

Surviving Sepsis Campaign Treatment Guidelines on Clinical Outcomes

in Severe Sepsis and Septic Shock: Improves Survival, Is Better Late

implementing early goal-directed therapy for severe sepsis and septic

Shock: a 4-year observational cohort study. Eur J Emerg Med 2011;00:

000–000.

34. Tanios MA, Zabow M, Epstein SK. The impact of implementing severe

sepsis management guidelines on mortality in a community based-

35. Gaieski D, McCoy J, Zeserson E, et al. Mortality benefit after

implementation of early goal directed therapy protocol for the treatment

4.

36. Armstrong R, Salfen SJ. Results of implementing a rapid response team

approach in treatment of shock in a community hospital. In: 43rd Annual

154.

standard protocol for the surviving sepsis 6 and 24 h bundles in septic

patients on total ICU risk adjusted mortality. Crit Care Med. 2006;34:

A108.

38. Kinsella MT, Biltoft JM, Marcz H, et al. Improving mortality from severe

sepsis by implementation of surviving sepsis guidelines at a community

adherence to evidence-based practices. Scientific highlights: Abstracts

of Original Investigations and Case Reports. Chest. 2006;130S:134S–

135S.

the management of patients with severe sepsis and septic shock in the

emergency department. JCMU. 2006;8:S16.

sepsis campaign for severe sepsis and septic shock in the ED. Ann

42. Cannon, CM. Improving outcomes in severe sepsis and septic shock:

results of a prospective multicenter collaborative. Crit Care Med. 2008;

36:A164.

initiative in a community hospital and its impact on morbidity and

44. Sebat F, Johnson D, Musthafa AA, et al. A multidisciplinary community

hospital program for early and rapid resuscitation of shock in nontrauma

45. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign

Guidelines for Management of Severe Sepsis and Septic Shock. Intens

46. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign

Guidelines for Management of Severe Sepsis and Septic Shock. Intens

47. Jones A, Shapiro N, Roslon M. Implementing Early Goal-Directed

Therapy in the Emergency Setting: The challenges and experiences of

translating research innovations into clinical reality in academic and

Queries for wjem-15-01-01

This manuscript/text has been typeset from the submitted material. Please check this proof carefully to make sure there have been no font conversion errors or inadvertent formatting errors. Allen Press.